
Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 1

Including cognitive biases and distance-based rewards in a

connectionist model of complex problem solving

Frédéric Dandurand 1+

Thomas R. Shultz 2

Arnaud Rey 3

+ Corresponding author

1 Department of Psychology, Université de Montréal

90 Vincent-d'Indy Avenue, Montreal, Quebec, H2V 2S9, Canada

Tel: ++1 514 343 4617

Email: frederic.dandurand@gmail.com

2 Department of Psychology and School of Computer Science, McGill University

1205 Dr. Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada

Tel: ++1 514 398 6139

Email: shultz@psych.mcgill.ca

3 Laboratoire de Psychologie Cognitive, CNRS – Aix-Marseille University

3, place Victor Hugo, 13331 Marseille, France

Tel : ++33 413 550 995

Email: arnaud.rey@univ-provence.fr

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 2

Abstract

We present a cognitive, connectionist-based model of complex problem solving that integrates

cognitive biases and distance-based and environmental rewards under a temporal-difference

learning mechanism. The model is tested against experimental data obtained in a well-defined and

planning-intensive problem. We show that incorporating cognitive biases (symmetry and simplicity)

in a temporal-difference learning rule (SARSA) increases model adequacy – the solution space

explored by biased models better fits observed human solutions. While learning from explicit

rewards alone is intrinsically slow, adding distance-based rewards, a measure of closeness to goal, to

the learning rule significantly accelerates learning. Finally, the model correctly predicts that explicit

rewards have little impact on problem solvers’ ability to discover optimal solutions.

Key words

Problem solving, computational modeling, reinforcement learning, temporal-difference learning,

cognitive biases, distance-reduction heuristic

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 3

1. Introduction

Research in problem solving has traditionally focused on the discovery of explicit strategies using

mechanisms that emphasized search (e.g., Newell, 1990), induction (e.g., Holland, Holyoak, Nisbett,

& Thagard, 1986), use of heuristics (e.g., Gigerenzer, Todd, & ABC Research Group, 1999; Polya,

1957) and reasoning by analogy (e.g., Holyoak & Thagard, 1996). Computational models have

reflected these emphases. There has been, however, an ever growing interest in learning, modeling

how cognitive agents learn to solve problems. A number of mechanisms have been proposed,

including chunking the results of look-ahead search into a new rule (Newell, 1990), compiling rules

that fire successively into a new rule (Taatgen & Lee, 2003), and reinforcement learning of rules (Fu

& Anderson, 2006), or strategy precedence (Rieskamp & Otto, 2006).

Learning to solve problems is the central theme of the current paper. We adopt a theoretical

framework grounded in reinforcement learning theory: using a temporal difference (TD) learning

mechanism (Sutton & Barto, 1998), problem solvers learn to accurately predict how much reward to

expect, that is, the long-term value of taking some action in some problem state. TD-learning and

reinforcement learning in general have a long history of success, both for biological and for machine

learning. Regarded as biologically plausible (Houk, Adams, & Barto, 1995), TD-learning has

successfully captured many classical and operant conditioning phenomena (Suri & W. Schultz, 1999;

Sutton & Barto, 1990).

Although often assimilated with simple and low-level associative learning, reinforcement learning has

also been used recently for the modeling of high level cognition, a qualification that applies to

problem solving (e.g., Daw & Frank, 2009). Research on human problem solving is largely dominated

by classical information processing theories (Holyoak, 1995). These theories rest on the problem-

space hypothesis (Newell, 1980) which states that problems can be described in terms of states,

operators and constraints. It is perhaps underappreciated that these concepts have direct

equivalents in reinforcement learning, making information processing theories and reinforcement

learning compatible and complementary.

TD-learning is a powerful mechanism by which problem solvers can learn complex tasks by trial-and-

error based on infrequent and impoverished explicit rewards – as little as one binary bit of

information (success or failure) for the evaluation of sequences containing multiple actions. Learning

with so little information is possible, but notoriously slow. So called ‘explicit environmental rewards’

can be positive (e.g., food) or negative (e.g., electric shocks); and they are typically modeled as real

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 4

numbers whose sign corresponds to the valence (positive or negative) and magnitude to the strength

of the reward.

In previous work, we explored how a computational model could learn to solve a complex problem

based on binary environmental rewards (Dandurand & Shultz, 2009). The model was able to learn

the task using TD-learning, but exhibited two important limitations: (1) model-selected actions were

more complex and asymmetrical than human-selected actions, and (2) models learned much more

slowly than humans.

In the current paper, we address these limitations by extending a basic TD-learning algorithm with

two novel terms: (1) cognitive biases towards simplicity and symmetry, and (2) self-generated

rewards based on the closeness to goal, dubbed distance-based reward (DBR): the closer an agent

gets to the goal state, the more DBR it gets. DBR is a distance-reduction heuristic similar to both hill-

climbing and means-ends analysis. Our hypothesis is that the dense and rich information provided by

distance-based rewards can make reinforcement learning a viable candidate in the problem-solving

domain.

1.1 Models of problem solving

In this section, we review some influential systems for problem solving that use TD-learning or

distance-reduction heuristics. Machine learning systems and cognitive models are both considered.

Table 1 provides a summary characterization of these systems. To be designated as cognitive,

systems have to be explicitly compared to experimental data of human problem solving, or at least

be presented and discussed in the context of cognitive or neurological plausibility. The second

column indicates whether a system uses a neural network (NN) implementation1. Finally, the last

three columns indicate whether a system implements, respectively, TD-learning, distance-reduction

heuristics, and cognitive biases. As we elaborate in the following sections, the table suggests that the

cognitive model presented here offers a unique combination of TD-learning, distance-reduction,

cognitive biases and connectionism.

1
 In contrast, many traditional problem solving models store knowledge as explicit rules or productions.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 5

cognitive

model

neural

networks

TD-

Learning

distance-

reduction

heuristics

cognitive

biases

(Bianchi, Ribeiro, & Costa, 2008;

Polat & Abul, 2002; Provost, Kuipers,

& Miikkulainen, 2006)

No No Yes Yes No

(Kaplan & Güzeliş, 2001; Parks,

Levine, & Long, 1998)
No Yes No No No

(Baldassarre, 2002; Rummery, 1995;

Tesauro, 1995; Thrun, 1995)
No Yes Yes No No

(Asgharbeygi, Nejati, Langley, &

Arai, 2005; Nason & Laird, 2004)
Partially No Yes No No

(Sun & Sessions, 1998, 2000) Partially Yes Yes No No

(Langley & Allen, 1993; Langley,

Choi, & Rogers, 2009)
Partially No No Yes No

(Busemeyer & Myung, 1992) Yes No No Yes No

(Kaplan & Güzeliş, 2001; Parks et al.,

1998)
Yes Yes No No No

(Fu & Anderson, 2006; Rieskamp &

Otto, 2006)
Yes No Yes No No

(Akyurek, 1992; Veloso et al., 1995) Yes No No Yes No

(Cutini, Ferdinando, Basso, Bisiacchi,

& Zorzi, 2008; Simen, Polk, Lewis, &

Freedman, 2002)

Yes Yes No No No

(Dandurand & Shultz, 2009) Yes Yes Yes No No

Model described in this paper (DBR) Yes Yes Yes Yes Yes

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 6

Table 1 - Characteristics of some influential problem solving models and systems. Columns indicate if the

model is cognitive, if it uses neural networks (NN), and whether it implements TD-learning, heuristics, or

cognitive biases for simplicity and symmetry.

1.1.1 Connectionist systems and models for problem solving

Connectionist-based systems for reinforcement learning have been successfully developed in the

machine learning community to solve complex problems, for instance, robot navigation (Baldassarre,

2002; Rummery, 1995), backgammon (Tesauro, 1995) and chess (Thrun, 1995). Other systems used

neural networks to learn Tower of Hanoi problems in unsupervised fashion (Kaplan & Güzeliş, 2001;

Parks et al., 1998).

While using neural networks is interesting from a psychological perspective, the primary concern of

machine learning is achieving the best possible performance while biological and psychological

plausibility of the mechanisms involved are often of limited interest. As far as we know, only a few

connectionist models of human problem solving have been proposed (e.g., Cutini et al., 2008; Simen

et al., 2002), and none address how learning can occur by reinforcement (except Dandurand &

Shultz, 2009).

1.1.2 Reinforcement learning in symbolic cognitive models

There are a few symbolic-rule systems that use reinforcement learning for problem solving. An ACT-R

model recently simulated nondeliberative decision making on a task involving sequential choices (Fu

& Anderson, 2006). Similarly, a symbolic model called SOAR (State Operator And Result) has been

proposed that uses reinforcement learning to optimize the choice of rules that maximize expected

rewards (Nason & Laird, 2004). Reinforcement learning was used in another SOAR model to optimize

search under limited resources when exhaustive inference could not be performed (Asgharbeygi et

al., 2005). Finally, Rieskamp and Otto (2006) presented a theory in which strategy selection for

solving inference problems is based on reinforcement learning.

1.1.3 Extracting rules based on reinforcement learning

In contrast to symbolic models which require prior knowledge in the form of explicit rules, Sun and

Sessions (1998, 2000) proposed an approach in which explicit rules are instead extracted a-posteriori

from a system trained using reinforcement learning. Expected values are learned in a

backpropagation neural network. The approach was tested on two robotics tasks and on a minefield

navigation task for which human performance had been previously documented (Gordon, A. Schultz,

Grefenstette, Ballas, & Perez, 1994; Sun, 1997).

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 7

1.1.4 Cognitive biases

In the present model, we consider two important and well-documented cognitive biases: simplicity

and symmetry. To our knowledge, no previously existing computational model of human problem

solving explicitly implements such biases.

Firstly, cognitive biases towards simplicity can be found across the cognitive system, including low-

and high-level perception, concept learning, categorization, language acquisition, scientific inference

and high-level cognition (e.g., Chater & Brown, 2008; Feldman, 2003, 2009; Freyd & Tversky, 1984;

Pizlo, 2008; Pothos & Chater, 2002; see Chater & Vitányi, 2003 for a review). A leading hypothesis to

explain these simplicity biases is that much of cognition concerns compression (Wolff, 1982) and

elimination of redundancy (Barlow, Kaushal, & Mitchison, 1989). Not only are the resulting

representations more cognitively economical to store and process, there is also evidence that simpler

representations tend to generalize better (e.g., Son, Smith, & Goldstone, 2008).

Secondly, the symmetry bias is thought to have an evolutionary basis, as generalization to mirror

stimuli is often adaptive; for instance, an organism that learns to avoid a danger coming on the right

side would certainly benefit from also being able to avoid this danger coming from the left side,

without needing to be trained again (Rollenhagen & Olson, 2000). Symmetry biases have been

directly measured in the brain; for instance, the inferotemporal neurons of monkeys trained to

recognize wire-frame objects generalized their responses to stimuli rotated by 180 degrees around

the vertical axis (Logothetis & Pauls, 1995). An important mechanism in this spontaneous

generalization to mirror-symmetry appears to be the interhemispheric connectivity due to the corpus

callosum. In fact, resection of the corpus callosum destroys this spontaneous generalization (Beale,

Williams, Webster, & Corballis, 1972). While often adaptive, spontaneous mirror-symmetry

generalization can produce errors and confusions, and such mirror-symmetry confusions are in fact

ubiquitous (Corballis & Beale, 1976). This mirror-symmetry bias has important implications for high-

level cognitive tasks; for instance, spontaneous generalization was found in naming tasks (Tarr &

Pinker, 1989) and visual priming (Biederman & Cooper, 1991; Fiser & Biederman, 2001).

Furthermore, children learning to read typically go through a mirror stage in which they confuse

mirror letters such as b and d; and can write indifferently in both directions (Walsh & Butler, 1996).

Children need to learn to break or inhibit the symmetry bias to avoid excessive generalization. In

expert readers, symmetry breaking appears specific to word stimuli, and remains present for picture

stimuli (Dehaene et al., 2010).

In problem solving, simplicity and symmetry biases involve the tendency to choose simple and

symmetrical actions or solution steps. Such biases can be useful for guiding problem solving – for

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 8

instance, a useful heuristic called divide-and-conquer involves breaking down a complex task in

simpler steps, that are often regular and applied recursively (Polya, 1957). On the other hand,

simplicity and symmetry may instead hinder the capacity of problem solvers to find appropriate

solutions, and are often associated with functional fixedness (Duncker, 1945), problem solving sets

(Luchins, 1942), and conceptual blocks (Adams, 1974). In the gizmo task studied in the present

research, we previously found that humans tended to select simpler and more symmetrical solution

steps than correct solutions require (Dandurand, Shultz, & Onishi, 2007).

1.1.5 Distance-reduction heuristics

A number of models have been proposed that use some distance-reduction heuristic, namely hill

climbing or means-ends analysis. In a mathematical approach to human decision making, Busemeyer

and Myung (1992) used hill-climbing to model how individuals learn to fine tune decision rules.

Means-ends analysis has been studied and implemented in symbolic cognitive models, namely

Prodigy (Veloso et al., 1995), SOAR (Akyurek, 1992; Newell, 1990) and ICARUS (Langley & Allen, 1993;

Langley et al., 2009). In these models, means-ends analysis was used to guide the generation of

problem solving plans or strategies based on explicit rules without involving reinforcement learning.

Finally, a few proposals for combining distance-reduction heuristics and reinforcement learning have

been proposed for machine learning applications (Bianchi et al., 2008; Polat & Abul, 2002; Provost et

al., 2006).

1.2 Organization of the article

The rest of the article is organized as follows. We first briefly present experimental data from

participants who learned to solve a complex problem, the Gizmo Problem Solving Task, using explicit

environmental rewards. We also review a previously proposed computational model of these data

and its limitations (Dandurand & Shultz, 2009). Second, we introduce an extended learning rule that

includes cognitive biases and a distance-reduction heuristic as improvements over this previous

model. Third, we make novel predictions using this resulting new model of human performance on

learning to solve the Gizmo Task when provided no explicit feedback. Finally, we present new

experimental data involving the Gizmo Task that tests these predictions.

1.3 The Gizmo Problem Solving Task

The present paper extends previous research on a complex problem, called the Gizmo Problem

Solving Task, that consists in finding which gizmo in a set of 12 identical-looking gizmos is heavier or

lighter than the others using at most three weighings on a two-sided balance scale (Dandurand &

Shultz, 2009; previously used in: Dandurand, Bowen, & Shultz, 2004; Dandurand, Shultz, & Onishi,

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 9

2008). Our approach is consistent with Newell’s (1973) recommendation to focus on a single complex

problem and study it thoroughly. Variants of this class of problems are well known logical-

mathematical tasks (Guy & Nowakowski, 1995; Halbeisen & Hungerbuhler, 1995) and a version of

this class of problems, called the Coin problem was used in a classic psychology experiment on hints

(Simmel, 1953).

1.3.1 Experiment with human participants

Among the data previously collected (Dandurand et al., 2004), we focus on a data sample of 20

participants (14 females and 6 males) consisting of McGill University undergraduate (N = 13) and

graduate (N = 7) students.

On each trial, a computer program2 (illustrated in Figure 1) randomly selected a target gizmo and

assigned it a heavy or a light weight. Participants were asked to determine, with 3 uses of a balance

scale, which of the 12 gizmos was either heavier or lighter than the others. Because gizmos look

identical, the target gizmo could only be identified based on weight. We asked participants to keep

track of their hypotheses about gizmo weights, with 7 choices for labeling a gizmo: (1) unknown

(heavy, light or normal weight), (2) heavy or normal weight, (3) light or normal weight, (4) heavy or

light weight, (5) heavy, (6) light, and (7) normal.

At the beginning of a trial, all 12 gizmos were labeled as unknown weight. Participants installed a

certain number of gizmos on the balance scale; any combination of gizmos was allowed. They would

then press the weight button and the scale would tip or remain balanced to indicate one of three

results: left heavier, right heavier, or equal weight. Participants would then update the gizmo labels

to reflect their updated hypotheses about possible weights of each gizmo, and typically repeat this

procedure twice (for weighings 2 and 3) with different combinations of gizmos. Participants gave

their answer by pressing the Answer button (usually after the third weighing, although they could

use fewer). Acceptable answer states consisted of labeling one gizmo as Heavy or Light, and the 11

others as normal. Participants had to answer, and thus, they would need to guess whenever they

were left with several possibilities after three weighings. Participants were given explicit feedback

about the accuracy of the answer provided (correct or incorrect), but they never received any

evaluative feedback for their first and second weighings. A new trial was then presented, with 12

gizmos labeled as U, and a different target selected at random. Participants worked on trials for 30

2
 A play-only version of the Gizmo Task, illustrating the reinforcement learning group, is available at:

http://lnsclab.org/html/BallsWeightExperiment/PlayVersion/play.html

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 10

minutes. Appendix 1 presents an exhaustive description of the solution space, that is, how this task

can be solved correctly without guessing.

Figure 1 - The Gizmo Problem Solving task. This example shows the third weighing in which 11 gizmos have

been determined to be of Normal weight, and one is of Unknown (U) weight. As a selection action, the

participant decided to install 1xU vs. 1xN. The balance scale result indicates that the gizmo labeled as U is

lighter than the other one.

We measured accuracy as the proportion of trials on which participants found the correct target

gizmo. We also measured the asymmetry and the complexity of the selected actions. Selection

actions, or simply actions, consist of two subsets of labeled gizmos to be installed respectively on

each side of the balance scale; see Table 2 for some examples. To measure complexity, we sum the

total number of labels present on each side of the scale. To measure asymmetry, we count the total

number of differences in labels between left and right sides of the scale, i.e., whenever a label is

present on one side of the scale but not on the other, one unit of asymmetry is added. Table 2 shows

examples of complexity and of asymmetry measures. For this problem, the upper bound of

complexity is 12 when items of each of the 6 label categories (U, LN, HN, L, H and N) are installed on

both sides of the scale. The upper bound of asymmetry is 6 when items of each category are installed

on the scale without a matching element on the other side.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 11

 Example of gizmos installed

 Left Right Index

Complexity HN HN N N 2

 HN LN LN HN LN N 5

Asymmetry HN HN N N 2

 LN LN LN LN LN LN 0

 HN LN LN HN LN N 1

Table 2 – Example computations of complexity and asymmetry for selection actions under the column

labeled “Example of gizmos installed”.

1.3.2 Previous computational model

In a previous model, we used TD-learning to successfully learn to solve gizmo problems using

environmental rewards only (Dandurand & Shultz, 2009). Details of the model can be found in the

methods section below, as the present model extends and improves on that previous model.

1.3.3 Comparison of human and model performance

Participants completed a mean of 18.6 trials. Models were trained to a level roughly equivalent to

humans. First, mean accuracy of participants was 0.58 (SE = 0.04) while model accuracy was lower

0.22 (SE = 0.02), but well above chance3 (t(40)=6.9, p<0.001). Second, participants selected on

average less asymmetrical and complex actions (asymmetry: 0.96; complexity: 2.35) than models did

(asymmetry: 1.23, t(40)=2.6, p<0.05; complexity: 2.74, t(40)=3.8, p<0.001).

To address these limitations, we now present a new and improved model of the gizmo problem

solving task. As mentioned, we hypothesize that the denser and richer information provided by

distance-based rewards will allow models to learn faster, and that including cognitive biases will

result in more human-like actions.

2. Methods

We now provide more details of the task and the model. Problem solvers need to alternate between

two sub-tasks: (1) choosing which gizmos to install and weigh on the balance scale (the selection

3
 Given 12 gizmos x 2 possible weights (heavy or light), chance level of success was 1 in 24, or about 0.04.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 12

task) and (2) keeping track of information about possible gizmo weights based on the result of the

weighing (the labeling task). Figure 2 combines a task analysis of the gizmo task with a reinforcement

learning framework showing relationships between the learning agent and its environment.

Figure 2 – Task analysis and agent-environment interactions for the gizmo problem solving task. From the

perspective of the agent making selection decisions, the ideal agent performing label updates is part of the

environment.

One of the challenges in modeling this problem is that the two sub-tasks (selection and labeling)

form a loop and are thus mutually dependent: the output of one is the input of the other. Therefore,

finding the optimal action in one sub-task depends on the other sub-task. Because learning

progresses on both sub-tasks, optimal actions are moving targets. As previously (Dandurand & Shultz,

2009), we present a model of the selection task only, assuming optimal updating of labels, thus

avoiding the moving-target issue. The ideal agent for label updates can be considered as part of the

environment as far as the gizmo selection process is concerned (see Figure 2). The fact that humans

performed 95.15% of labeling in accord with an optimal strategy (N = 3444) provides support for the

use of such an optimal agent. Sub-optimality consisted in errors in label use (incorrect or inconsistent

labeling), and in failures to update labels when new information was available4. Errors were often

4
 For instance, in 0.5% of cases, participants incorrectly update labels U to N on the lighter side, appearing to

ignore the fact the target can be light, while correctly updating labels U to HN on the heavier side of the scale.

Selection agent (Determine which gizmos to weigh)

Initial state (all gizmos labelled as Unknown)

Solution found?

Three weighings used?

Yes

Correct?

Yes Success (1)Yes

Failure (-1)No

Not solved (-0.5)

Use scale (do a weighing)

Optimal agent for label updates (Keep track of weight hypotheses)

Action

Environment

State

Environmental
reward

Compute distance to goal

DBR

No

No

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 13

visibly due to GUI-interface manipulation and inattention. In incorrect labeling, participants often

generated solutions whose logic strongly suggests they mentally kept track of the gizmo weights

despite neglecting or forgetting to update labels explicitly.

2.1 Selection agent

The selection agent enumerates the exhaustive set of possible actions from the current state. States

are characterized by the number of gizmos marked using each label type (e.g., 12xU; 4xHN 4xLN 4xN;

and 11xN 1xH), and actions consist of two subsets of labeled gizmos to be installed respectively on

each side of the balance scale. Actions are selected for processing under two constraints. First, we

consider only actions that have the same number of gizmos on both sides of the scale, because

humans selected equal numbers of gizmos in 98.6% of their actions, the remaining fraction usually

due to GUI manipulation errors. This very likely reflects the fact that the participants in the

experiment -- university students -- had prior knowledge and experience using a balance scale, and

clearly knew they had to install the same number of gizmos on each side to get a meaningful and

informative result. This human expertise with balance scales was implemented as a selection agent

that considered only actions that have the same number of gizmos on both sides of the scale.

Second, we drop the heavy-light label because humans almost never used it. After these

simplifications, the search space contains a total of 6187 states and 5,671,402 actions, i.e., a mean of

916 actions for each state.

For each action that can be taken from current state, the selection agent computes the expected

reward or quality Q(st,at) of the given action (at) taken from the current state (st) using a cascade-

correlation neural network (Cascor: Fahlman & Lebiere, 1990). The selection agent can only keep

track of the N best action alternatives5. After the list of possible actions is completely processed, the

agent selects one action to perform from its action buffer such that the probability of selecting some

action is proportional to the estimate of the expected rewards of that action, a method known as

Softmax (Sutton & Barto, 1998). As it progresses in the problem space, the selection agent improves

its estimate of expected reward or quality. Estimates of expected rewards generated by cascor are

improved using a modified version of SARSA (Sutton & Barto, 1998), which in turn become targets for

cascor to learn. Each of these aspects is described in detail in the following sections.

5
 Due to various cognitive limitations, humans probably also have a limited number of alternative actions they

can select from, at any given moment.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 14

2.2 SARSA: The standard TD-learning technique

As an extension of the previous model (Dandurand & Shultz, 2009), the proposed model is based on

SARSA, a standard reinforcement-learning algorithm from the class of temporal-difference

techniques (Sutton & Barto, 1998). SARSA was named after the quintuple that the algorithm uses (st,

at, rt+1, st+1, at+1):

        tt111tttt a,sQ,a,sQ a,sQ   ttt asQr  Equation 1

where s is a state; a is an action; r is a reward; indices t and t+1 are used for current and next states

and actions respectively; α is a learning rate; γ is a discount factor; and Q (for quality or value)

indicates how much discounted rewards the agent expects to obtain for taking action a in state s. Q

is thus an estimation of the long-term value of taking some action a from state s. To estimate Q,

SARSA uses the reward actually obtained in the next state (rt+1), and also adjusts its estimate based

on the discrepancy between the current Q value and the Q value of the next state-action pair

(Q(st+1,at+1)-Q(st,at)). In other words, if the next state-action pair has little value, then the estimate for

the current state-action pair decreases. This mechanism allows some form of propagation of Q values

back in time (from t+1 to t), hence the name temporal-difference for this class of techniques.

In the current paper, we extend standard SARSA to cover distance-reduction heuristics and cognitive

biases. Before we present the extended equation, we first describe how we compute distance to goal

as well as selection complexity and asymmetry.

2.3 Distance-based rewards (DBR)

Preliminary data from think-aloud protocols of participants solving gizmo problems provides

evidence for the use of a distance-reduction heuristic. Namely, participants reported trying to find

the gizmos of normal weight and exclude them from possible solutions. This narrowing of possible

targets allows them to get closer to the solution.

We measure distance to goal as the sum over all 12 gizmos of their individual distances, as described

in Table 3. We hypothesize that problem solvers can compute, or at least estimate, the total distance

to goal as the sum of individual distances. For example, a state consisting of 6xHN and 6xLN has a

distance of 12. A goal state such as 1xH and 11xN has a distance of 0.5, and the initial state (12xU)

has a distance of 24. Solution states have a distance of 0.56.

6
 If distances are set to 0 for Heavy, Light and Normal gizmos, then any combination of these three gizmo labels

are valid (e.g., 4xH, 2xL and 6xN), and thus solution states are not unique.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 15

Label Distance

Unknown (U) 2

Heavy or Light (HL) 1

Heavy or Normal (HN) 1

Light or Normal (LN) 1

Heavy (H) 0.5

Light (L) 0.5

Normal (N) 0

Table 3 - Distance to solution used for means-ends analysis. We set distance of heavy and light labels as 0.5

to make the solution unique.

We define distance-based rewards (DBR) as follows:

 

 max

12

1

1ln

1ln

1
dist

id

DBR
i


















 Equation 2

where d(i) are the distances to goal of each gizmo i based on Table 3, and distmax is the maximal

possible distance to goal, here 24. The equation is globally constructed as (1-(normalized distance to

goal)), so that the shorter the distance to the goal the higher the distance-based reward. Normalized

distance to goal uses the total sum of distances for individual gizmos, and 1 is added to avoid ln(0)

which is not defined. The denominator is a normalization term to scale the range of normalized

distance to goal from 0 to 1. Figure 3 presents Equation 2 as a plot.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 16

Figure 3 - Distance-based reward as a function of total distance to goal.

2.4 Measures of asymmetry and complexity

We hypothesize that complex and asymmetrical selections are more cognitively demanding to

process and reason about, and thus incur more penalty. Thus, we relate complexity and asymmetry

to a cognitive cost penalty (CCP) as follows:

  asymmetrycomplexityCCP  ln Equation 3

Computations of complexity and asymmetry were presented in the methods section of the human

experiment, and examples were given in Table 2. The maximal cognitive cost penalty is 2.5, that is,

ln(12) since the maximal complexity is 6 and the maximal asymmetry is 6, as described previously.

2.5 SARSA extensions

We extended the standard SARSA equation (equation 3) by adding two new terms: (1) a contribution

of distance-based rewards (DBR) at time step t+1 (dt+1), and (2) a contribution of cognitive cost

penalty (c(at)). Alongside with standard environmental rewards, these new terms are weighted into

an overall Q-value as follows:

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

D
is

ta
n

ce
 b

as
e

d
 r

e
w

ar
d

Total distance to goal

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 17

       ),,)((,, 1111 ttttttttttt asQasQacdrasQasQ    Equation 4

Where:

• rt+1 is an environmental reward: +1 for correct answer, -0.5 when the system did not give any

answer after three weighings, and -1 for an incorrect answer.

• dt+1 is a distance-based reward (DBR), varying between 0 and 1.

• c(at) is the cognitive cost penalty for selecting an action.

• µ, β and λ control the respective contributions of environmental rewards, distance-based

rewards and cognitive cost penalty respectively.

• α is a learning rate (set to 0.1).

• γ is a discount factor (set to 1.0)7

2.6 Action selection

When learning to solve the task, an agent must decide what selection action to perform. We used a

Softmax approach, as done previously (Dandurand & Shultz, 2009). Under Softmax, the higher the

expected reward Q(st,at) for action at in state st, the greater the probability of selecting action at, see

Equation 5.

 Equation 5

In other words, promising actions are taken more often, but every action has some probability of

being selected. Similarly, humans do not always select actions they expect to be the best. They often

try out apparently less optimal solutions to see what happens, resulting in further exploration of the

7
 This effectively means no discounting. We chose not to discount because the problem description made no

mention that shorter solutions should be preferred. In fact, participants produced only about 10% of solutions

involving fewer than three weighings, some of which seemed unintended and due to GUI manipulation errors.

Correct and reliable solutions to this problem require the maximal number of weighings allowed (Dandurand &

Shultz, 2009). And ultimately, not discounting is appropriate for episodic tasks (Sutton & Barto, 1998).

𝑝𝑖 =
𝑒𝑄(𝑠𝑡 ,𝑎𝑖,𝑡)

 𝑒𝑄(𝑠𝑡 ,𝑎𝑗 ,𝑡)𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒
𝑗=1

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 18

solution space. In the proposed model, Softmax is applied to a small set of the best possible

alternatives, those in the action buffer.

2.7 Connectionist function approximator

To compute estimates of expected rewards, the model uses a cascade-correlation (cascor) neural

network function approximator. A function approximator does not store Q values for every

encountered state and action. Instead, the Q value is approximated or constructed as a function of

states and actions (Q(st,at) = f (st,at)). The transfer function f is implemented as a neural network

here. In contrast to lookup tables in which expected rewards are explicitly and exhaustively stored,

neural networks exhibit interesting generalization properties. Cascade-correlation (Fahlman &

Lebiere, 1990) is a constructive neural network algorithm for supervised learning. In cascor,

computational units are recruited as necessary to solve some task, and installed as new hidden units.

This avoids having to design a network topology a-priori, and allows the topology to change as

needed. Cascade-correlation has been used successfully to model several cognitive tasks, on which it

often performed better than standard backpropagation (e.g., Shultz, 2003; Shultz, Mysore, & Quartz,

2007).

Cascor learns by alternating between input and output phases. In input phases, computational units

(here, sigmoid units) in a recruitment pool are trained to maximize covariance with residual network

error. At the end of input phase, when covariance does not increase anymore, the unit with the

highest covariance is inserted and connected to the current network structure. In this project, we use

a variant of cascor called sibling-descendent cascade-correlation (SDCC: Baluja & Fahlman, 1994).

SDCC can choose to install units on the current deepest hidden layer (sibling units) or on a new layer

(descendent units). SDCC thus creates a greater variety of network topologies, from deep to flat, to

suit the problem being learned. In output phases, connection weights feeding output units are

trained to minimize network error. Cascor is trained using an algorithm for training feed-forward

networks such as QuickProp (Fahlman, 1988) in both input and output phases. Details of cascor

parameter settings can be found in the Appendix 2.

SARSA was interfaced with cascor using a caching system (Rivest & Precup, 2003). SARSA is an online

technique, generating a data pattern after every action taken. In contrast, Cascor works in batch

mode, processing multiple data patterns at once. A cache is thus required to buffer data patterns

until there are enough to make a batch to train cascor (here, 100 patterns). To ensure that SARSA

uses up-to-date patterns, the proposed system first looks for patterns in the cache. If a pattern is not

found, cascor is used to estimate the expected reward or quality (Q) of the state-action pair, which is

inserted in the cache. All Q value updates are performed in the cache. When a batch contains enough

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 19

patterns, the batch is converted into a training set of 100 patterns that cascor learns, after which the

cache is emptied and is ready to prepare the next batch of 100 patterns. The cache thus contains up-

to-date values as calculated by SARSA for recently traversed state-action pairs.

2.8 Input and output coding

When converting cached patterns into a training set for cascor, a training pattern is generated for

every state-action pair present in the cache. Inputs are built as the concatenation of state and action

data, resulting in 24 inputs: 6 to code the state and 18 to code the action.

The state indicates the number of gizmos marked using each label type. We drop the heavy or light

(HL) label because humans almost never used it. The 6 inputs for state code the proportion of gizmos

of each label type in order: U, HN, LN, H, L, N. For example, to indicate the following state: 4U,

4HN,4LN, 0H, 0L, 0N, the input vector is 0.33, 0.33, 0.33, 0.0, 0.0, 0.0, where 0.33 = 4/12.

The action indicates how many gizmos of each label type to install in each container. There are three

containers: gizmo bank, left side of scale and right side of scale. For each container, the proportion of

gizmos of each label is given in the same order as for the state. For example, if all 12 gizmos are

labeled as unknown, and the selected action consists in weighing 6 gizmos on the left side of the

scale (1/2 of 12 = 6) against 6 gizmos (1/2) on the right side, leaving no gizmo in the bank, the input

is: 1, 0, 0, 0, 0, 0 (State); 0, 0, 0, 0, 0, 0 (B: Bank); 0.5, 0, 0, 0, 0, 0 (L: Left side of balance scale); 0.5,

0, 0, 0, 0, 0 (R: Right side of balance scale).

The output is a single continuous value coding the network’s estimation of the expected reward or

quality of the state-action pair presented at the input. The sigmoid function of the output unit is

scaled to match the range of possible rewards.

2.9 A numerical example

In this section, we present a fictive example to illustrate model processing for a single trial

comprising 3 weighings. To fully exercise the model, we set learning parameters as follows: µ = 1.0, β

= 1.0 and λ = 1.0, meaning that the model learns from both environmental (µ) and distance-based

rewards (β) under cognitive cost penalty (λ). Action buffer size is set to 4. To refer to the multiple

time steps involved in a trial, the following notation is used: t, t+1 and t+2 refer to processing that

lead to the first, the second and the third weighing, respectively; and t+3 refers to what follows the

third weighing (i.e., relating to the terminal state reached).

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 20

Following Figure 2, we have, for the first weighing:

1. Initial state. A trial begins with all gizmos labeled as Unknown, i.e., st =12xU.

2. The selection agent determines which gizmos to weigh:

a. List actions. The selection agent enumerates all possible actions from this state.

b. Compute Q values for each action in the list using cascor8.

c. Select an action from buffer using Softmax.

3. Use scale (do a weighing): The model randomly selects and installs gizmos on the scale

according to the action selected. Here, let’s say gizmos are installed as follows: gizmo

numbers 2, 3, 9, 1, 6 and 10 on the left side of the scale, and numbers 5, 7, 4, 12, 8 and 11 on

the right side. Because gizmo 7 is heavier, the right side of the scale will be heavier.

4. Optimal agent for label updates: Gizmos on the left (lighter) side of the balance scale are

updated to 6xLN; whereas gizmos on the right (heavier) side are updated as 6xHN. Thus st+1 =

6xHN, 6xLN.

5. Three weighings used? Answer: No, so continue to the next weighing.

6. Compute distance to goal (see Table 3). Here, distance is 6x1+6x1 = 12, and dt+1 = 1- ln (1+12)

/ ln (25) = 0.203 using Equation 2.

The process is repeated for weighings 2 and 3, and various measures are collected, as shown in Table

4. Note that, after weighing 3, “Three weighings used?” is true, but because there are still 2xHN,

“Solution Found” is false and an environmental reward of -0.5 is obtained for this trial. After the trial

is completed, the model updates Q-value estimates, as shown in the last row of Table 4 (values from

the current or the next column may be used depending on indices t and t+1 in Equation 4), and

writes these updates back to the cache.

8
 Note that, whenever a cascor access is made (read or write), the model verifies the cache. If the cache is full

(that is, contains 100 patterns), a batch is created and used for training of cascor. This consolidates recent

SARSA updates into the transfer function (state-action pairs to Q values) of cascor.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 21

 Time t t+1 t+2 t+3

st 12xU 6xHN, 6xLN 6xHN, 6xN 2xHN, 10xN

at (B) 0xU; (L) 6xU; (R) 6xU
(B) 6xHN; (L) 3xLN; (R)

3xLN

(B) 5xHN, 1xLN; (L)

3xLN; (R) 2xLN, 1xHN
N/A

Scale result Right side heavier Equal weight Left side heavier N/A

rt N/A 0 0 -0.5

dt
0.0 = 1-

ln(1+24)/ln(1+24)

0.203 = 1-

ln(1+6x1+6x1)/ln(1+24)

0.396 = 1-

ln(1+6x1)/ln(1+24)

0.659 = 1-

ln(1+2x1)/ln(1+24)

c(at) -0.693 = -ln(2) -0.693 = -ln(2) -1.386 = -ln(1+3) N/A

Initial

Q(st,at)
0.4 0.5 0.3 N/A

Updated

Q(st,at)

0.361 =

0.4+0.1*(0+0.203-

0.693+0.5-0.4)

0.450 =

0.5+0.1*(0+0.396-

0.693+0.3-0.5)

0.147 =0.3+0.1*(-

0.5+0.659-1.386+0-0.3)
N/A

Table 4 - Numerical value for this example of the measures used by SARSA, and other information about

states, actions and outcomes.

2.10 Model testing

Network performance is assessed after each learning episode (that is, a pass across all 24 trials). The

model is tested on all 24 possible cases (12 gizmos x 2 weights). We measure accuracy, complexity

and asymmetry of solutions generated. When tested, models always select the action associated

with the highest expected reward. A similar behavior may be expected of humans: when tested, they

would do their best (i.e., pick actions with highest expected reward), but they would explore more

alternatives when learning (i.e., use a technique analogous to the proposed modified Softmax).

3. Results

The present model has four important parameters: (1) the action buffer size, (2) the new SARSA term

for distance-based rewards, (3) the new SARSA term for cognitive cost penalty to enforce simplicity

and symmetry biases, and (4) the usual SARSA term for environmental rewards. To avoid a

combinatorial explosion of parameter combinations, we devised a systematic approach that varies

one parameter at a time.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 22

In a first simulation, we investigate whether models can learn the task with distance-based rewards,

i.e., without any explicit environmental rewards and cognitive biases. We manipulate the action

buffer size to study its effect on performance, and seek an appropriate size for further simulations. In

a second simulation, we compare learning under various combinations of environmental rewards

and distance-based rewards with an appropriate action buffer size and no cognitive biases. Finally, in

the third simulation, we explore how the addition of cognitive biases for symmetry and simplicity

improves model coverage.

3.1 Simulation 1 – Learning using distance-based rewards (DBR)

In the first simulation, we ask whether models can learn the task with distance-based rewards only (β

= 1.0), i.e., without any environmental rewards (µ = 0.0). To study its effect on learning, we vary the

action buffer size (i.e., the number of options n considered by Softmax) from 1 to 10. We use no

cognitive bias (λ = 0.0). Networks are trained to perfect accuracy (1.0), or for a maximum of 1000

episodes. We perform 20 replications per buffer size level with different initial conditions, for a total

of 200 simulations.

Accuracy results are shown in Figure 4, the number of cascor recruits in Figure 5, and number of

episodes in Figure 6 to reach the performance showed in Figure 4. As we can see in Figure 4, models

successfully learned the task with distance-based rewards only to near-perfect accuracies (98% to

100%) for action buffer sizes above 3.

Figure 4 – Model accuracy learning with distance-based rewards only as a function of action buffer size, with

standard errors.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Action buffer size

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 23

Figure 5 – Number of cascor recruits to reach near-perfect performance (see Figure 4) in model learning with

distance-based rewards only as a function of action buffer size, with standard errors

Figure 6 - Number of training episodes to reach near-perfect performance (see Figure 4) in model learning

with distance-based rewards only as a function of action buffer size, with standard errors.

We perform one-way ANOVAs with action buffer size (10 levels) as an independent factor. First, an

analysis of arcsine-transformed accuracies reveals a significant effect of action buffer size, F(9,190) =

23, p < 0.001. A Tukey HSD post-hoc test (p = 0.05) further reveals two homogeneous subsets, the

first one containing an action buffer size of 1, and the second containing action buffer sizes from 2 to

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10

R
e

cr
u

it
s

Action buffer size

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Ep
is

o
d

e
s

Action buffer size

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 24

10. Thus, there is no significant difference in accuracy for action buffer sizes of 2 and more. Second,

an analysis of cascor recruits reveals no significant effect of action buffer size, F < 1, as we can see in

Figure 5. Finally, an analysis of the number of training episodes reveals a significant effect of action

buffer size, F(9,190) = 12, p < 0.001. A complementary analysis reveals the linear trend is significant,

F(9,190) = 12, p < 0.001, suggesting training becomes faster as action buffer size increases, as we can

see in Figure 6.

What action buffer size is appropriate for learning by distance-based rewards only in these

simulations? While the principle of economy favors small sizes, results suggest that increasing buffer

size improves learning speed and may also increase accuracy, although accuracy is already near

ceiling for buffer sizes as small as 2. The resulting tradeoff suggests a buffer size between 2 and 5

appears appropriate for this problem. In following simulations, we use a buffer size of 4, which offers

a good tradeoff between accuracy and learning time.

3.2 Simulation 2 – Learning with distance-based and environmental

rewards

In the second simulation, we ask whether environmental or distance-based rewards are better for

learning this task. To study learning under different combinations of rewards in Equation 4, we run

simulations as a two-independent-factors design:

(1) Contribution of environmental rewards, 2 levels: used (µ = 1.0) and unused (µ = 0.0)

(2) Contribution of distance-based rewards, 2 levels: used (β = 1.0) and unused (β = 0.0)

Dependent variables are accuracy and number of cascor recruits. The action buffer size is set to 4,

and no cognitive cost is included in these simulations (λ = 0).

The condition in which models are given environmental rewards only (µ = 1.0, β = 0.0) replicates a

condition reported previously (Dandurand & Shultz, 2009). Adjustments of the cascor parameters to

reduce phase shifting result in faster learning. The condition in which environmental rewards and

distance-based rewards make no contribution to learning (µ = 0.0, β = 0.0) acts as a control. Although

these control networks are not learning to solve the task, they nevertheless adjust quality of the

current state-action pair based on the quality of the next pair, according to Equation 4. These quality

values are due to random initial conditions, and thus do not bear any meaningful information.

We find that any combination of environmental or distance-based rewards enables models to learn

the task given sufficient training. Figure 7 shows the first 200 episodes of training. For comparison

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 25

purposes, we also plot average performance of human participants in the control and the

reinforcement learning groups (M = 0.47), see section 3.2.1 (Testing predictions about learning with

and without explicit feedback) for details. It is important to recall that human performance data are

available only for less than 1 episode9, and that the dashed line shows this as a constant. We could

certainly expect human performance to increase with training as models do, but testing this

hypothesis would require prohibitively long periods of training (extrapolating the data available for

30 minutes, we can estimate that humans would complete one episode of training in about 45

minutes).

Figure 7 - Accuracy as a function of training episode for the different learning conditions (plotted every 10th

episode), with standard error. Human performance is a point value (0.47) shown as a constant for

comparison purposes.

We see, first, that models trained only by environmental rewards take much more training (more

than 100 episodes) to reach human level accuracy than the two models for which training includes

distance-based rewards. Second, we see that models with distance-based rewards only initially

perform better than those that also include environmental rewards. The likely explanation is that

environmental rewards can sometimes reinforce incorrect strategies that involve guessing because

guessing sometimes leads to the correct answer. This gives problem solvers a training signal with

higher variance: while sub-optimal strategies are on average rewarded less than optimal strategies,

9
 During the 30 minutes they worked on problems, participants completed an average of about 16 trials. One

episode comprises 24 trials (that is, all combinations of 12 gizmos and 2 possible weights, light or heavy).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

A
cc

u
ra

cy

Episode

Environmental and distance-based rewards

Distance-based rewards only

Environmental rewards only

No rewards (control)

Human

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 26

both can be equally rewarded on some of the trials, namely those in which guessing yields a correct

answer. In contrast, the distance-based rewards approach reliably reinforces strategies that most

narrow down the set of possible answers, irrespectively of actual outcomes of guessing. The resulting

variance of the training signal is thus smaller. In sum, by partially rewarding guessing, models

learning with environmental rewards perform worse initially. However, despite the larger variance in

rewards obtained from the environment, solutions would stabilize to their correct values (optimality)

over the long-run.

In short, all models require more training (that is, several episodes) than humans (less than one

episode) to reach equivalent accuracy (about 0.47). However, models learn much faster with

distance-based rewards than with environmental rewards. In fact, when distance-based rewards are

used, environmental rewards appear at best redundant and provide no additional benefit, and at

worse can impair performance by partially rewarding strategies that involve guessing. In the

following section, we use this result to make a prediction of performance for humans who are given

no explicit feedback.

3.2.1 Testing predictions about learning with and without explicit feedback

We designed an experiment to compare the performance of human participants who are given or

not given explicit feedback on this task. The prediction of our model is that participants given no

feedback should perform at least as well as participants who are told if their answers are correct or

not.

3.2.1.1 Design

The experimental design consisted in manipulating one independent factor, availability of explicit

feedback, over two levels: (1) a reinforcement learning group in which participants were told if their

answers were correct or not, and (2) a control group receiving no feedback.

3.2.1.2 Participants

The data sample contained forty participants (N=20 per condition); 23 females and 17 were males.

Mean participants’ age was 23.2, ranging from 18 to 47 years of age. Participants were recruited

through the McGill University subject pool (N=22) or were unselected web users (N=18).

Participants were assigned to one of the conditions (reinforcement or control) in a round-robin

fashion, starting with group with the fewest completed participants.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 27

3.2.1.3 Procedure

The experimental procedure is similar to the one used previously (Dandurand et al., 2004) except

that the experiment was performed online. For this purpose, the program previously used was

adapted as a Java applet that could run online in standard web browsers. The online method was

found to be valid for this experiment (Dandurand et al., 2008).

Upon pressing the “Answer” button after the third weighing, the program displayed a message to the

participants in the reinforcement learning group indicating if the gizmo they identified as heavy or

light was the correct one. In contrast, participants in the control group were told that their answer

was recorded and that they would get their accuracy score at the end of the experiment, but they

were not told if individual trials were correct or not.

3.2.1.4 Results

Participants completed a mean of 15.5 trials in the reinforcement learning group, and 16.7 trials in

the control group. We found that accuracy of the control group (M = 0.48, SE = 0.06) was higher than

accuracy of the reinforcement learning group (M = 0.46, SE = 0.05), as we expected. However, this

difference in accuracies was not statistically significant, t (38) < 1. This nevertheless confirms our

prediction about the role of explicit feedback, namely that humans do not need explicit feedback to

learn this task, and that performance without explicit feedback is at least as high as performance

with explicit feedback. Note that average accuracy of the reinforcement learning group was lower

than previously measured in the lab (M = 0.58), see (Dandurand et al., 2008) for more details about

differences between the lab and the online methods for the Gizmo task.

These experimental results support the prediction made by the model: when problem solvers can

estimate their distance to goal and use this estimation as self-generated rewards, explicit

environmental rewards are, at best, redundant and do not further improve learning.

3.3 Simulation 3 - Cognitive bias for symmetry and simplicity

In this last simulation, we assess how symmetry and simplicity biases (λ = 1 vs. λ = 0) improve the

utility of actions selected. We focus on data of the control group described earlier. Models and

humans can be matched in two ways: given equivalent training, or reaching equivalent accuracies.

We test whether cognitive biases are effective in both cases.

We manipulate two factors:

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 28

1. Amount of model learning (4 levels: 1, 2, 12 and 25 episodes). There are two ways to match

human performance. First, as done in previous models, we can give models approximately

the same amount of overt training as humans had. We have seen that, in this condition,

model accuracy tends to be lower than humans. Second, we can train models more than

humans so that accuracies of humans and models approximately match. One episode

corresponds approximately to human overt training10, whereas we empirically find that 25

episodes of training yield model accuracy that approximately matches human-level accuracy

(see Figure 7); see the discussion section for further details.

2. Cognitive bias for symmetry and simplicity (2 levels: λ = 0 for unbiased model; λ = 1 for

biased model). The unbiased model is identical to the one presented in simulation 2.

To assess the effect of biases on selection actions, we perform mixed ANOVAs on complexity and

asymmetry measures with model type as an independent factor (2 levels: model with bias and

unbiased model) and training level as a repeated factor (4 levels: 1, 2, 12 and 25 episodes). We

ignore the first weighing because initial state (12xU) yields a fixed and predictable selection

complexity of 2 (Labels U on each side of the scale) and an asymmetry of 0.

A pre-training period is necessary for models to effectively learn to prefer simple and symmetrical

solutions from the penalty term λ. During this pre-training period lasting 50 episodes, biased models

are rewarded for selecting simple and symmetrical actions, but not for solving the task. That is, they

receive no environmental nor distance-based reward (that is, µ = 0, β = 0, and λ = 1, in equation 4).

When pre-training is finished, models learn to solve the task with distance-based rewards only but

retain a preference for simple and symmetrical solutions (µ = 0, β = 1, and λ = 1).

Figure 8 shows human and model accuracy as a function of training. Recall that humans got the

equivalent of about one episode of training, hence the single point for human accuracy. We can see

that model accuracy is below human accuracy given equivalent training, but reaches a comparable

level by 25 episodes for both the biased and unbiased models.

We analyze arcsine-transformed accuracies using a mixed ANOVA with training level as a repeated

factor (4 levels: 1, 2, 12 and 25 episodes) and bias as an independent factor (2 levels: biased and

unbiased). The ANOVA reveals a main effect of training level, F(1,38) = 20, p < 0.001, stemming from

10

 Humans completed a mean of 18.6 trials which corresponds to less than one episode in reinforcement

learning terms (an episode is a pass throughout all 24 different problem trials). Because the model

implementation uses the episode as the basic unit for training, we use a single episode of training to

approximately match human learning.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 29

an increase in accuracy with training. The effect of bias is not significant, F(1,38) < 1. We also find a

significant interaction between training and bias, F(1,38) = 5.5, p < 0.01. This interaction suggests

that models that select simple and symmetrical actions are more accurate than unbiased networks,

but only early in training (1 episode of training). We return to the possible implications of this

interaction in the discussion.

Figure 8 – Human and model accuracy as a function of learning time and biases for simple and symmetrical

solutions.

Complexity measure results are presented in Figure 9 and Figure 10 for weighings 2 and 3

respectively. As we can see, unbiased models generate more complex solutions than humans.

However, complexity of the solutions generated by the biased models remain comparable to human

throughout training levels for both weighings.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 12 25

A
cc

u
ra

cy

Episode

Human Model with bias Unbiased model

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 30

Figure 9 - Complexity of selection actions in weighing 2 for humans and models. Models are trained between

a single episode, which is approximately equivalent to over human training, and 25 episodes, which yields an

accuracy approximately equal to human level.

We analyze the measure of complexity using a mixed ANOVA with training level as a repeated factor

(4 levels: 1, 2, 12 and 25 episodes) and bias as an independent factor (2 levels: biased and unbiased).

For weighing 2, the ANOVA on complexity reveals a main effect of model type, F(1,38) = 62, p <

0.001, stemming from larger complexity in the unbiased model (M= 3.2) than the biased ones

(M=2.6). We also found a significant effect of training, F(1,38) = 16, p < 0.001, stemming from an

increased complexity between one episode of training (M=2.75) and 25 episodes (M=3.1), and an

interaction, F(1,38) = 7.7, p < 0.001, stemming from a larger increase in the unbiased model than the

biased one.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 12 25Se
le

ct
io

n
 c

o
m

p
le

xi
ty

 (
w

e
ig

h
in

g
2

)

Episode

Human Model with bias Unbiased model

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 31

Figure 10 - Complexity of selection actions in weighing 3 for humans and models. Models are trained

between a single episode, which is approximately equivalent to over human training, and 25 episodes, which

yields an accuracy approximately equal to human level.

For weighing 3, the ANOVA on complexity reveals a main effect of model type, F(1,38) = 63, p <

0.001, stemming from larger complexity in the unbiased model (M= 3.1) than the biased ones

(M=2.4). The effect of training level was also significant, F(1,38) = 237, p < 0.001, which indicates that

selections were less complex early in training (1 episode: M=2.7) than late in training (25 episodes:

M=2.9). Finally, the interaction was not significant, F(1,38)=1.8 , p > 0.05.

Asymmetry measure results are presented in Figure 11 and Figure 12 for weighings 2 and 3

respectively. We observe the same pattern as for complexity: unbiased models generate more

asymmetrical solutions than humans; and again solutions generated by the biased models are

comparable to humans in terms of asymmetry.

For weighing 2, the ANOVA of asymmetry reveals a main effect of model type, F(1,38) = 173, p <

0.001, stemming from larger asymmetry in the unbiased model (M=1.2) than the biased ones

(M=0.5). The effect of level of training was also significant, F(1,38) = 3.7, p < 0.05, which indicates

that selections were more asymmetrical early in training (1 episode: M=1.0) than later in training (25

episodes: M=0.8). Finally, the interaction was not significant, F(1,38)=1.7, p>0.05.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 12 25Se
le

ct
io

n
 c

o
m

p
le

xi
ty

 (
w

e
ig

h
in

g
3

)

Episode

Human Model with bias Unbiased model

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 32

Figure 11 - Asymmetry of selection actions in weighing 2 for humans and models. Models are trained

between a single episode, which is approximately equivalent to over human training, and 25 episodes, which

yields an accuracy approximately equal to human level.

Figure 12 - Asymmetry of selection actions in weighing 3 for humans and models. Models are trained

between a single episode, which is approximately equivalent to over human training, and 25 episodes, which

yields an accuracy approximately equal to human level.

For weighing 3, the ANOVA on asymmetry reveals a main effect of model type, F(1,38) = 120, p <

0.001, stemming from larger asymmetry in the unbiased model (M=1.3) than the biased ones

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 12 25Se
le

ct
io

n
 a

sy
m

m
e

tr
y

(w
e

ig
h

in
g

2
)

Episode

Human Model with bias Unbiased model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 12 25Se
le

ct
io

n
 a

sy
m

m
e

tr
y

(w
e

ig
h

in
g

3
)

Episode

Human Model with bias Unbiased model

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 33

(M=0.7). The effect of weighing was also significant, F(1,38) = 2.9, p < 0.05, which indicates that

selections were more asymmetrical early in training (1 episode: M=1.1) than later in training (25

episodes: M=0.9). Finally, the interaction was significant, F(1,38)=3.9 , p < 0.05, which suggests that

the reduction in asymmetry was larger for unbiased models than biased ones.

4. Discussion

We implemented a distance-reduction heuristic as distance-based rewards. By generating rewards

based on closeness to goal, models learn to prefer actions that lead to states closer to goal. We saw

that distance-based rewards were sufficient to learn the Gizmo task. In fact, when distance-based

rewards were available, environmental rewards appeared redundant and provided no additional

benefit. This allowed us to make a prediction that was confirmed in human performance on this

task: participants who obtain explicit feedback (rewards) on their performance do no better than

control participants.

Concepts of symmetry and simplicity proved useful to discriminate between human solutions and

model solutions. By default, models typically selected more complex and asymmetrical actions than

humans did. However, the addition of a penalty term for complexity and asymmetry in model

selections, in conjunction with a pre-training period, yielded solutions of equivalent complexity and

asymmetry.

These two additions, a distance-reduction heuristic and cognitive biases, greatly improved the

coverage of the model, although the accuracy of the model is still below human accuracy given

equivalent overt training.

4.1 Why do distance-based rewards work better than environmental

rewards?

Why do problem solvers learn better with distance-based rewards than environmental rewards?

First, distance-based rewards are more frequent. In this problem, solvers can compute or estimate

distance to the goal on every weighing. In contrast, environmental rewards are available only after

the third weighing. Second, distance-based rewards are richer. While environmental rewards only

indicate if a solution was found or not (binary value), distance-based rewards are graded as a

function of distance. Such gradation allows problem solvers to compare failed solutions: the solution

that moved the problem solver closer to the goal will generate more rewards and thus be judged as

more desirable than the one that resulted in a larger distance to goal.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 34

4.2 Why cognitive biases may be beneficial?

One can ask why humans tend to prefer simple and symmetrical actions. Of course, simplicity and

symmetry are generally cognitively less demanding (they take less time to plan and execute, less

inference to interpret results, etc.). Because it is probably adaptive for agents to minimize use of

resources, starting with simple and symmetrical solutions is preferred.

Simulation results suggest an additional, less obvious explanation. We found that models that tend to

select simple and symmetrical actions were more accurate than unbiased models, but only when

training was short. In fact, the bias towards simplicity and symmetry appears to ultimately impede

the generation of correct solutions to this problem in humans (Dandurand et al., 2007). This suggests

that symmetrical and simple solutions may be better on average when not much is known about the

problem. Selecting complex and asymmetrical steps is perhaps necessary to generate better

solutions, but it is not sufficient. In fact, the set of asymmetrical and complex solutions is logically

larger than the set of simple and symmetrical solutions, and may contain many poor actions11. With

little a-priori knowledge of the task, starting with simple and symmetrical solutions not only saves

resources, but it also yields better (yet suboptimal) solutions on average. If this example is typical of

a wide variety of tasks, it may make sense for humans as problem solvers to have evolved a general

preference for symmetry and simplicity, especially in a context where a reasonable (but not

necessarily optimal) solution must be generated quickly with minimal effort, c.f., satisficing

(Gigerenzer et al., 1999; Simon, 1957).

4.3 What is likely missing in the model?

In this research, we focused on a distance-reduction heuristic as a mechanism for learning using self-

generated rewards. However, human problem solving likely involves more cognitive processes than

the ones implemented in this model, including mechanisms or strategies for learning without

rewards. For example, the present model lacks an explicit module to perform look-ahead reasoning.

By mentally simulating the task, generating weight hypotheses and predicting outcomes, a problem

solver could greatly save on overt trials. In fact, this task can be solved on paper by reasoning only.

Paper here would act as an external aid because most humans probably could not completely solve

the task mentally. However, the point is that humans can probably save on overt weighings by using

covert, mentally simulated weighings. This may explain why humans require less overt training than

current models. This could be tested by looking at the time-course of task performance. For instance,

11

 The fact that, as training proceeds, the accuracy of the biased models increases in a more stable and steady

fashion compared to the unbiased models (see Figure 8) is consistent with the hypothesis that biased models

explore a smaller portion of the problem space.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 35

if we assume that it takes about the same time to obtain information by mental simulations and

overt use of the computer program, participants should on average improve at the same rate, with

respect to time, regardless of the number of trials overtly made. If we assume that information can

be obtained faster using mental simulations than overt use of the program, participants who take

longer per trial (and thus may engage in more mental simulations) may outperform those who

complete trials quickly.

Work on algorithms such as TDLeaf, which combines search and reinforcement learning (Baxter,

Tridgell, & Weaver, 1998), could serve as inspiration for developing a mentally-simulated, look-ahead

module. Future research could also explore how other standard heuristics could be implemented in

the model.

4.4 Similarities and differences with other models

In the introduction, we described a number of systems related to the present model. Here, we

further describe the present work in the context of two particularly relevant research lines.

First, Polat and Abul (2002) developed a system for learning a Constrained Blocks World problem in a

multi-agent context. Agents needed to find an action sequence that transforms an initial

configuration of blocks into a goal configuration. In their system, rewards for non-terminal states

were calculated by scaling (dividing) environmental rewards by an estimated distance to goal, as

described in the introduction. While this approach allows closeness to goal to amplify the effect of

environmental rewards, the latter are still needed, thus not addressing how learning can occur

without environmental rewards. In contrast, the proposed approach based on distance based

rewards (DBR) uses an additive scheme in which closeness to goal linearly combines with

environmental rewards to allow problem solvers to learn from any combination of means-ends

analysis or environmental rewards. The two systems also differ in the mechanisms they use to learn

or store state-action-reward information – the DBR-based system uses neural networks to

approximate rewards, whereas the Polat and Abul system uses lookup tables to store reward values.

Recall that neural networks generalize to unvisited states and actions based on similarity, whereas

standard lookup tables do not.

Second, Bianchi and collaborators (2008) developed a Heuristically Accelerated Reinforcement

Learning (HARL) system for autonomous robots to learn to navigate an environment. HARL is very

similar to DBR in using a weighted sum of explicit rewards and contributions of a heuristic function.

The most important difference between HARL and DBR resides in where and how the combination of

rewards and heuristic values occurs. In HARL, the heuristic score directly influences the choice of

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 36

action (that is, the policy). The expected long term value of actions (i.e., Q values) is unaffected by

the heuristic. As a consequence, the heuristic values influence, but cannot substitute for, explicit

environmental rewards. In contrast, for DBR, heuristic values affect the choice of action throughout

the value function (i.e., Q), which leaves the policy unchanged: probabilistically select one of the four

actions with highest expected value. Because self-generated distance-based rewards are just another

source of rewards for DBR, it can learn using any combination of self-generated heuristic rewards

and explicit environmental rewards (even when no explicit reward is given). In contrast, HARL needs

explicit rewards, and thus would not be able to learn with heuristics only.

Finally, the proposed connectionist approach to approximating expected rewards and implicitly

learning rules or strategies contrasts with the production system approach of Fu and Anderson

(2006). While both models learn from environmental rewards using SARSA and Softmax, only the

present model includes distance-based rewards and cognitive biases. Another difference lies in the

complexity of the problem undertaken. Whereas their problem can be expressed with about 4

production rules, the Gizmo problem comprises 6187 states and 5671402 actions, which would

require many more rules.

4.5 Symbolic and connectionist models of problem solving

There are no explicit rules in the present model - computation of expected rewards is done in a

connectionist system. This mapping provides implicit rules for solving problems. It is better described

as rule following rather than rule use (Shultz & Takane, 2007), or here, strategy following rather than

strategy use. In contrast, symbolic systems manipulate explicit, symbolic rules. While these symbolic

models can explain how problem solvers select and combine the most appropriate rules for a given

problem, they leave unanswered an important question: how did these rules or strategies enter the

system in the first place?

The Clarion-based approach of Sun and Sessions (2000) proposes an interesting avenue in which two

levels of representation co-exist, an implicit one and an explicit one. Explicit rules are inferred after

learning at the implicit level, rather than needing to be given to the model.

While the implicit and distributed nature of the knowledge in connectionist models may make

interpretation more challenging, it offers two important advantages over the explicit rules used in

symbolic systems. Firstly, connectionist representations are more compact. Symbolic models typically

function as look-up tables with an expected reward value uniquely associated with each rule, and

independently of all other rules. For the gizmo problem, an explicit lookup table would require as

many as 5,671,402 entries (one for each distinct state-action pairs). In contrast, our connectionist

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 37

model learns a mapping of state-actions to values, and require about 10 hidden units, that is about

330 connection weights12. Secondly, generalization in connectionist models is more realistic than in

symbolic counterparts – that is, unvisited states and actions will yield similar expected rewards to

similar and known states and actions, but in a graded fashion (Shultz, 2001, 2003). In symbolic

models, expected rewards are typically computed for and assigned to individual rules independently

of other rules, and therefore we can expect symbolic models to require more learning.

Despite not explicitly manipulating rules, we acknowledge that the present system is not fully

connectionist, particularly in the module that lists possible actions from some given state and the

action buffer. Future work could investigate connectionist implementations of these modules

(Rougier & O’Reilly, 2002; e.g., Rougier, Noelle, Braver, J. D. Cohen, & O’Reilly, 2005).

4.6 Relationships between DBR, hill-climbing and means-ends analysis

DBR implements a distance-reduction heuristic. How does this relate to other important distance-

reduction techniques, namely hill-climbing and means-ends analysis? For this discussion, it is

important to recall that, because DBR is an extension of an important TD-learning technique (SARSA),

most characteristics of TD are also present in DBR.

Hill-climbing (HC) is a term broadly used in machine learning to refer to gradient ascent techniques

(Russell & Norvig, 2003). It is also used in cognitive psychology to refer to a heuristic consisting of

selecting and performing actions that move problem solvers closer to a goal state as quickly as

possible (e.g., Robertson, 2001). As such, both HC and DBR use distance-to-goal information and rate

as desirable being in a state closer to a solution.

An important characteristic of hill-climbing is that action selection relies on local information only,

thus resembling an amnesiac trying to climb a mountain in thick fog (Russell & Norvig, 2003). Detour

problems (for example, the Cannibals and Missionaries problem) provide a classical challenge to hill

climbing. To find a solution, problem solvers must temporarily increase distance to goal to escape a

local distance minimum, that is, a dead-end. Hill-climbing techniques remain stuck in such local

optima. Furthermore, hill climbing is a greedy technique: it always selects the action that locally

maximizes approach to goal. It is therefore deterministic without further exploration of the problem

space: for a given problem, the sequence of actions selected will always be the same.

12

 In standard cascor, the number of connection weights equals 0.5 x hidden x (hidden + 1) + inputs x hidden +

outputs x (inputs + hidden + 1)

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 38

In contrast, the fact that DBR is based on TD-learning has two important beneficial implications. First,

what matters to DBR is maximizing the long-term value or sum of rewards, not only the immediate

distance reduction as in standard hill climbing. For detour problems, the long-term value of actions

that avoid dead-ends and lead to some global optima (that is, a goal state) will be higher than the

value of actions that lead to local optima, despite the immediate rewards (i.e., distance reduction)

being in the opposite direction. Second, DBR uses Softmax as a probabilistic action selection

mechanism, which results in more exploration of the problem space. Thanks to these two

characteristics, DBR should be able to solve detour problems. Exploring how DBR models handle such

local distance minima would be an interesting avenue for future research.

Means-ends analysis involves selecting and applying an operator to transform the current problem

state into a new state which is closer to some goal state in at least one dimension (Newell & Simon,

1963). Means-ends analysis is search-intensive, and combines forward and backward search (Rich,

1983). In contrast, TD-learning only uses one-step, forward-only search to list possible actions from

the current state. Good estimates of the long-term rewards occur in SARSA by bootstrapping (Sutton

& Barto, 1998), that is, by the gradual diffusion of Q values back by one time step (t+1 to t). It should

be noted that TD does propagate some Q values signal backwards by one time step, but only to the

visited states that have been reached by this forward search; it does not search backwards.

Preliminary work using think-aloud-protocols provides evidence that distance-reduction efforts are

common in human solutions -- for instance, participants stating explicitly their objective of excluding

as many gizmos as possible. However, more research would be needed to find direct evidence that

participants are using backward search for solving the Gizmo problem. Backward search is, by

necessity, a mental construction because the agent is, also by necessity, traversing the problem

space in a forward fashion in reality. More research would also be needed to determine what sub-

goals, if any, human participants identify in the Gizmo Task. For instance, entering the third weighing

with at most 3 possibilities could be stated as a sub-goal. However, preliminary results suggest that

sub-goal identification is rare. If sub-goals could be identified, future models could implement a

hierarchical system that looks for appropriate sub-tasks. Studying hierarchical representations in

reinforcement learning is an active area of research (e.g., Botvinick, Niv, & Barto, 2009).

5. Conclusion

To sum up, along with others, we provide additional support that reinforcement learning can be used

to model human problem solving. We presented a connectionist model of problem solving based on

an improved version of SARSA in which closeness to goal is rewarded, and complex and asymmetrical

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 39

actions are penalized. These extensions allowed the model to better simulate human patterns of

performance on the task.

DBR is a novel approach to generating rewards for SARSA. Distance-based rewards, when they can be

computed, are denser and richer than their binary environmental counterparts. In this case, they are

available at every weighing, and they provide a graded evaluation as a function of distance, allowing

finer discriminations between action alternatives. In our proposed modification of SARSA, these

rewards can be linearly combined with environmental rewards.

Finally, this research shows how multiple sources of information (here, environmental and distance-

based rewards) can combine with realistic constraints (here, biases) in a unified way. To our

knowledge, no other cognitive model has proposed such a unified framework based on a single

learning rule with many psychologically plausible features of human problem solving (learning,

means-ends analysis, cognitive biases, and an action buffer).

6. Acknowledgment

We thank François Rivest and Fermin Moscoso Del Prado for insightful comments and suggestions.

We also thank Simcha Samuel for her help with experimental data collection. This work was

supported by a McGill Major scholarship to F. D. and an operating grant to T. R. S. from the Natural

Sciences and Engineering Research Council of Canada.

7. Appendix

7.1 Appendix 1 - Optimal solutions

The solution space was fully searched to find the exhaustive set of optimal solutions. Optimal

solutions lead to the reliable identification, without guessing, of all 24 possible cases of target gizmos

(12 gizmos x 2 weights -- heavy or light). Measuring accuracy of some solution as the average number

of correct responses over the 24 possible cases, only optimal solutions will yield 100% accuracy. Sub-

optimal solutions also lead to correct answers in some cases, but not reliably. For instance, a solution

that would, on average, leave two possible gizmos to choose from after the third weighing would

have an accuracy of 50% (50-50 chance).

In optimal solutions, each of the 24 possible case (12 gizmos x 2 weights) cause a distinct and unique

sequence of scale results. The theoretical maximum of gizmos that can be distinguished given 3

weighings and 3 possible balance outcomes is 33 = 27.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 40

7.1.1 Optimal label updates

The following set of rules allows problem solvers to update labels optimally, at any weighing:

1. If the scale does not move, then all gizmos on it are of normal (N) weight.

2. If the scale moves, then all gizmos left in the bank are of normal (N) weight.

3. If there are gizmos of unknown (U) weight located on the side of the scale that moves up,

then they are of Light or Normal (LN) weight.

4. If there are gizmos of unknown (U) weight located on the side of the scale that moves

down, then they are of Heavy or Normal (HN) weight.

5. If there are gizmos of Light or Normal (LN) weight located on the side of the scale that

moves down, then they are of normal (N) weight.

6. If there are gizmos of Heavy or Normal (HN) located on the side of the scale that moves

up, then they are of normal weight.

7. If all gizmos are marked as of normal weight (N), except for one which is marked as

Heavy or Normal (HN) or Light or Normal (LN) weight, then this gizmo is the answer, and

should be relabeled as Heavy (H) or Light (L), respectively.

7.1.2 Optimal gizmo selection

In this section we present optimal gizmo selections, organized by weighing. Note that, due to

symmetry, solutions are equivalent when the arrangements on the two sides of the scale would be

exchanged or swapped.

7.1.2.1 First weighing

On the first weighing, the only optimal selection action is to install four versus four gizmos on the

balance scale, as shown in Table 5. After optimal label updates, this optimal solution leads to two

possible states (as the two unbalanced cases are in fact symmetrical): (1) 4xU, 8xN for the balanced

case; and (2) 4xHN, 4xLN, 4xN for the unbalanced case. Using the distance measure described below,

we see that distance to goal in both cases is 8.

Balance scale side 1 Balance scale side 2 Bank

4xU 4xU 4xU

Table 5 – Optimal solutions for weighing 1, starting from the 12xU.

7.1.2.2 Second weighing

Following the balanced case (state: 4xU, 8xN), two optimal solutions exist, as shown in Table 6. After

optimal label updates, both solutions result in two possible states depending on the scale result: (1)

3x(HN and/or LN), 9xN; and (2) 1xU, 11xN.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 41

Balance scale side 1 Balance scale side 2 Bank

3xU 3xN 1xU, 5xN

2xU 1xU, 1xN 1xU, 7xN

Table 6 – Optimal solutions for weighing 2, starting from the 4xU, 8xN state. Due to symmetry, sides 1-2

correspond equivalently to right-left and left-right.

Solutions found for the unbalanced case (state: 4xHN, 4xLN, 4xN) are presented in Table 7. One can

verify that, after optimal label updates, all these solutions lead to states in which 2 or 3 gizmos are

left with HN and/or LN labels (i.e., respectively, 10xN or 9xN), for all three possible scale outcomes

(balanced, left side heavier or right side heavier).

Variant 1 Variant 2

Scale side 1 Scale side 2 Bank Scale side 1 Scale side 2 Bank

HN LN N HN LN N HN LN N HN LN N HN LN N HN LN N

2 1 2 1 2 4 1 2 1 2 2 4

2 1 1 1 1 1 2 3 1 2 1 1 1 2 1 3

3 2 1 4 2 2 3 1 4 2

2 2 1 3 2 1 1 2 2 1 3 1 2 1

2 1 2 1 3 3 1 2 2 1 3 3

1 3 1 3 3 1 3 1 1 3 3 1

2 2 1 1 2 1 1 2

Table 7 - Optimal solutions for weighing 2, starting from the 4xHN, 4xLN, 4xN state. Due to symmetry, sides

1-2 correspond equivalently to right-left and left-right. When applicable, solution variants in which HN and

LN gizmos are interchanged are presented side by side.

7.1.2.3 Third weighing

Optimal solutions at the second weighing yield states in which 2 or 3 gizmos are left with HN and/or

LN labels (and, respectively, 10xN or 9xN). The three scale outcomes (balanced, left side heavier or

right side heavier) are used to discriminate up to 3 possibilities left (HN and/or LN). Possible

solutions are shown in Table 8.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 42

Variant 1 Variant 2

Scale side 1 Scale side 2 Bank Scale side 1 Scale side 2 Bank

HN LN N HN LN N HN LN N HN LN N HN LN N HN LN N

1 1 1 9 1 1 1 9

1 1 1 9 1 1 1 9

1 1 2 1 9 1 1 2 1 9

1 1 2 10

1 1 1 10 1 1 1 10

1 1 1 10 1 1 1 10

Table 8 - Optimal solutions for weighing 3, starting from the states (1) 3x(HN and/or LN), 9xN; or (2) 2x(HN

and/or LN), 10xN. Due to symmetry, sides 1-2 correspond equivalently to right-left and left-right.

7.2 Appendix 2 - Cascade-Correlation parameters settings

For this problem, target expected rewards can take on many different values, especially when all

terms of equation 4 contribute. This requires more precise tracking of target values than typical

binary classification tasks that simply require discriminating two values. While default cascor

parameters were appropriate for binary classification, we empirically find that allowing cascor to

remain for longer periods in input and output phases results in improved performance for this task.

To allow cascor to learn for longer periods without switching phases, we selected: (1) a large value

for the patience parameter (50 epochs in input and output phases rather than the default of 8); and

(2) a low change threshold parameter (0.01 in input phase, and 0.002 in output phase rather than

default of 0.03 and 0.01, respectively)13. These parameters are used to detect error reduction

stagnation. Cascor switches phase if error reduced by less than “change threshold” over “patience”

epochs. Cascor also switches phase after having reached maximum epochs in the current phase, set

here to 200. We set the score threshold at .025 of the reward range to track target expected values

with sufficient precision, as done previously (Dandurand & Shultz, 2009). No weight change is

allowed to be greater in magnitude than the maximum growth factor times the previous step for that

weight (Fahlman, 1988). Here, maximum growth factor was set to 2.0. The decay parameter, set to

0.0002 in output phase and to 0 in input phase, is used to keep weights from growing too big. Finally,

13

 Parameter values were the defaults in the previous model (Dandurand & Shultz, 2009).

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 43

the learning rate, which controls the amount of gradient descent used in updating weights, was set

to 0.175 in output phase and to 1.0 in input phase.

8. Vitae

 Frédéric Dandurand completed a PhD degree in psychology at McGill

University. He is currently an NSERC-funded postdoctoral researcher at

Université de Montréal. His principal research interest is the computational

modeling of high-level cognitive processes such as language and problem

solving. He is also a Professional Engineer in Canada and has worked as a

software engineer for two major computer equipment companies.

 Thomas Shultz (PhD Yale in Psychology) is Professor of Psychology and

Associate Member of the School of Computer Science at McGill U. He teaches

courses in Computational Psychology and Cognitive Science. He is a Fellow of

the Canadian Psychological Association, and a founder and former

Coordinator of McGill Cognitive Science. Research interests include

connectionism, cognitive science, cognitive development, evolution and

learning, and relations between knowledge and learning. He has over 200

research publications in these areas. He is a Member of the IEEE Neural Networks Society

Autonomous Mental Development Technical Committee and Chair of the AMD Task Force on

Developmental Psychology.

 Arnaud Rey is currently a CNRS (Centre National de la Recherche

Scientifique) researcher working in the domain of cognitive psychology and

psycholinguistics at the Cognitive Psychology Lab (Marseille, France). He has

completed a PhD in Cognitive Neuroscience at the University of Provence

(Marseille, France) and a postdoc at Harvard University. Also, he has

previously held an Assistant Professor position at the University of

Bourgogne (Dijon, France). In 2007, he has been nominated as a Junior Member at the “Institut

Universitaire de France”.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 44

9. References

Adams, J. L. (1974). Conceptual blockbusting: A guide to better ideas. Reading, MA: Addison-Wesley.

Akyurek, A. (1992). Means-ends planning: An example Soar system. In J. A. Michon & A. Akyurek

(Eds.), Soar: A Cognitive Architecture in Perspective (pp. 109-167). Dordrecht, The

Netherlands: Kluwer Academic Publishers.

Asgharbeygi, N., Nejati, N., Langley, P., & Arai, S. (2005). Guiding inference through relational

reinforcement learning. Proceedings of the Fifteenth International Conference on Inductive

Logic Programming (pp. 20–37). Bonn.

Baldassarre, G. (2002). Planning with neural networks and reinforcement learning. University of

Essex, Department of Computer Science.

Baluja, S., & Fahlman, S. E. (1994). Reducing network depth in the cascade-correlation (No. CMU-CS-

94-209). Pittsburgh: Carnegie Mellon University.

Barlow, H. B., Kaushal, T. P., & Mitchison, G. J. (1989). Finding minimum entropy codes. Neural

Computation, 1(3), 412–423.

Baxter, J., Tridgell, A., & Weaver, L. (1998). TDLeaf(lambda): combining temporal difference learning

with game-tree search. the Proceedings of the ninth Australian Conference on Neural

Networks (pp. 168-172).

Beale, I. L., Williams, R. J., Webster, D. M., & Corballis, M. C. (1972). Confusion of mirror images by

pigeons and interhemispheric commissures. Nature, 238(5363), 348-349.

Bianchi, R. A. C., Ribeiro, C. H. C., & Costa, A. H. R. (2008). Accelerating autonomous learning by using

heuristic selection of actions. Journal of Heuristics, 14, 135-168.

Biederman, I., & Cooper, E. E. (1991). Evidence for complete translational and reflectional invariance

in visual object priming. Perception, 20(5), 585–593.

Botvinick, M. M., Niv, Y., & Barto, A. G. (2009). Hierarchically organized behavior and its neural

foundations: A reinforcement learning perspective. Cognition, 113, 262–280.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 45

Busemeyer, J. R., & Myung, I. J. (1992). An adaptive approach to human decision making: Learning

theory, decision theory, and human performance. Journal of Experimental Psychology:

General, 121(2), 177-194.

Chater, N., & Brown, G. D. A. (2008). From universal laws of cognition to specific cognitive models.

Cognitive Science, 32(1), 36-67.

Chater, N., & Vitányi, P. (2003). Simplicity: a unifying principle in cognitive science? Trends in

Cognitive Sciences, 7(1), 19-22.

Corballis, M. C., & Beale, I. L. (1976). The psychology of left and right. New-York: Erlbaum.

Cutini, S., Ferdinando, A. D., Basso, D., Bisiacchi, P. S., & Zorzi, M. (2008). Visuospatial planning in the

travelling salesperson problem: A connectionist account of normal and impaired

performance. Cognitive Neuropsychology, 25(2), 194-217.

Dandurand, F., & Shultz, T. R. (2009). Connectionist models of reinforcement, imitation, and

instruction in learning to solve complex problems. IEEE Transactions on Autonomous Mental

Development, 1(2), 110 - 121.

Dandurand, F., Bowen, M., & Shultz, T. R. (2004). Learning by imitation, reinforcement and verbal

rules in problem solving tasks. In J. Triesch & T. Jebara (Eds.), Proceedings of the Third

International Conference on Development and Learning: Developing social brains (pp. 88-95).

La Jolla, CA: University of California, San Diego, Institute for Neural Computation.

Dandurand, F., Shultz, T. R., & Onishi, K. H. (2007). Strategies, heuristics and biases in complex

problem solving. Proceedings of the Annual Conference of the Cognitive Science Society

(CogSci 2007) (pp. 917-922). New-York: Lawrence Erlbaum Associates, Inc.

Dandurand, F., Shultz, T. R., & Onishi, K. H. (2008). Comparing online and lab methods in a problem-

solving experiment. Behavior Research Methods, 40(2), 428-434.

Daw, N. D., & Frank, M. J. (2009). Reinforcement learning and higher level cognition: Introduction to

special issue. Cognition, 113, 259-261.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 46

Dehaene, S., Nakamura, K., Jobert, A., Kuroki, C., Ogawa, S., & Cohen, L. (2010). Why do children

make mirror errors in reading? Neural correlates of mirror invariance in the visual word form

area. Neuroimage, 49(2), 1837-1848.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), 1-110.

Fahlman, S. E. (1988). Faster-learning variations on back-propagation: An empirical study. In T. J.

Sejnowski, G. E. Hinton, & D. S. Touretzky (Eds.), the Proceedings of the 1988 Connectionist

Models Summer School. San Mateo, CA: Morgan Kaufmann.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In D. S. Touretzky

(Ed.), Advances in neural information processing systems 2 (pp. 524-532). Los Altos, CA:

Morgan Kaufmann.

Feldman, J. (2003). The simplicity principle in human concept learning. Current directions in

psychological science, 12(6), 227-239.

Feldman, J. (2009). Bayes and the simplicity principle in perception. Psychological Review, 116(4),

875-887.

Fiser, J., & Biederman, I. (2001). Invariance of long-term visual priming to scale, reflection,

translation, and hemisphere. Vision Research, 41(2), 221–234.

Freyd, J., & Tversky, B. (1984). Force of symmetry in form perception. American Journal of

Psychology, 97(1), 109-126.

Fu, W.-T., & Anderson, J. R. (2006). From recurrent choice to skill learning: a reinforcement-learning

model. Journal of Experimental Psychology: General, 135(2), 184-206.

Gigerenzer, G., Todd, P. M., & ABC Research Group. (1999). Simple heuristics that make us smart.

Oxford, UK: Oxford University Press.

Gordon, D., Schultz, A., Grefenstette, J., Ballas, J., & Perez, M. (1994). NRL task: navigation and

collision avoidance. Washington DC: Naval Research Lab.

Guy, R. K., & Nowakowski, R. J. (1995). Coin-weighing problems. American Mathematical Monthly,

102(2), 164-167.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 47

Halbeisen, L., & Hungerbuhler, N. (1995). The general counterfeit coin problem. Discrete

Mathematics, 147(1), 139-150.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. (1986). Induction - Processes of inference,

learning and discovery. Cambridge, MA: MIT Press.

Holyoak, K. J. (1995). Problem solving. In E. E. Smith & D. N. Osherson (Eds.), Thinking: An Invitation

to Cognitive Science, 2nd edition (pp. 267-296). Cambridge, MA: MIT Press.

Holyoak, K. J., & Thagard, P. (1996). Mental leaps - Analogy in creative thought. Cambridge, MA: MIT

Press.

Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia generate and use

neural signals that predict reinforcement. In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.),

Models of information processing in the basal ganglia (pp. 249-270). Cambridge, MA: MIT

Press.

Kaplan, G. B., & Güzeliş, C. (2001). Hopfield networks for solving Tower of Hanoi problems. ARI: An

Interdisciplinary Journal of Physical and Engineering Sciences, 52(1), 23-29.

Langley, P., & Allen, J. A. (1993). A unified framework for planning and learning. In S. Minton (Ed.),

Machine learning methods for planning. San Mateo, CA: Morgan Kaufmann.

Langley, P., Choi, D., & Rogers, S. (2009). Acquisition of hierarchical skills in a unified cognitive

architecture. Cognitive Systems Research, 10, 316-332.

Logothetis, N. K., & Pauls, J. (1995). Psychophysical and physiological evidence for viewer-centered

object representations in the primate. Cerebral Cortex, 5(3), 270-288.

Luchins, A. S. (1942). Mechanization in problem solving—the effect of< xh: i> Einstellung</xh: i>.

Psychological monographs.

Nason, S., & Laird, J. E. (2004). Soar–RL: Integrating reinforcement learning with Soar. Proceedings of

the Sixth International Conference on Cognitive Modeling (pp. 208-213). Mahwah, NJ:

Erlbaum.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 48

Newell, A. (1973). You can’t play 20 questions with nature and win. In W. G. Chase (Ed.), Visual

information processing. New York: Academic Press.

Newell, A. (1980). Reasoning, problem solving, and decision processes: The problem space

hypothesis. In R. Nickerson (Ed.), Attention and performance VIII. Hillsdale, NJ: Lawrence

Erlbaum.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1963). GPS: A program that simulates human thought. In E. A.

Feigenbaum & J. Feldman (Eds.), Computers and thought. New York, NY: McGraw-Hill.

Parks, R. W., Levine, D. S., & Long, D. L. (Eds.). (1998). Fundamentals of neural network modeling:

Neuropsychology and cognitive neuroscience. Cambridge, MA: MIT Press.

Pizlo, Z. (2008). 3D Shape. Its unique place in visual perception. MIT Press.

Polat, F., & Abul, O. (2002). Learning sequences of compatible actions among agents. Artificial

Intelligence Review, 17, 21-37.

Polya, G. (1957). How to solve it. 2nd ed. Princeton, NJ: Princeton University Press.

Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human categorization.

Cognitive Science, 26(3), 303–343.

Provost, J., Kuipers, B. J., & Miikkulainen, R. (2006). Developing navigation behavior through self-

organizing distinctive-state abstraction. Connection Science, 18(2), 159–172.

Rich, E. (1983). Artificial intelligence. New York: McGraw-Hill.

Rieskamp, J., & Otto, P. E. (2006). SSL: A theory of how people learn to select strategies. Journal of

Experimental Psychology: General, 135(2), 207–236.

Rivest, F., & Precup, D. (2003). Combining TD-learning with Cascade-correlation networks. the

Proceedings of the twentieth International Conference on Machine Learning (ICML) (pp. 632–

639).

Robertson, S. I. (2001). Problem solving. East Sussex: Psychology Press Ltd.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 49

Rollenhagen, J. E., & Olson, C. R. (2000). Mirror-image confusion in single neurons of the macaque

inferotemporal cortex. Science, 287(5457), 1506-1508.

Rougier, N. P., & O’Reilly, R. C. (2002). Learning representations in a gated prefrontal cortex model of

dynamic task switching. Cognitive Science:, 26(4), 503-520.

Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Reilly, R. C. (2005). Prefrontal cortex and

flexible cognitive control: rules without symbols. Proceedings of the National Academy of

Sciences of the United States of America, 102(20), 7338-7343.

Rummery, G. A. (1995). Problem solving with reinforcement learning. Cambridge University,

Engineering Department.

Russell, S., & Norvig, P. (2003). Artificial intelligence, a modern approach. Second edition. Upper

Saddle River, NJ: Prentice Hall.

Shultz, T. R. (2001). Assessing generalization in connectionist and rule-based models under the

learning constraint. Proceedings of the Twenty-third Annual Conference of the Cognitive

Science Society (pp. 922-927). Mahwah, NJ: Erlbaum.

Shultz, T. R. (2003). Computational developmental psychology. Cambridge, MA: MIT Press.

Shultz, T. R., & Takane, Y. (2007). Rule following and rule use in simulations of the balance-scale task.

Cognition, 103, 460-472.

Shultz, T. R., Mysore, S. P., & Quartz, S. R. (2007). Why let networks grow? In D. Mareschal, S. Sirois,

G. Westermann, & M. H. Johnson (Eds.), Neuroconstructivism: Perspectives and prospects

(pp. 65-98). Oxford: Oxford University Press.

Simen, P., Polk, T., Lewis, R., & Freedman, E. (2002). A recurrent neural network model of goal

management. Proceedings of the International Conference on Computational Intelligence and

Neuroscience (pp. 504-508).

Simmel, M. L. (1953). The coin problem: a study in thinking. American Journal of Psychology, 66, 229-

241.

Simon, H. A. (1957). Models of man. New York, NY: Wiley.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 50

Son, J. Y., Smith, L. B., & Goldstone, R. L. (2008). Simplicity and generalization: Short-cutting

abstraction in children’s object categorizations. Cognition, 108(3), 626–638.

Sun, R. (1997). Learning, action and consciousness: a hybrid approach toward modelling

consciousness. Neural Networks, 10(7), 1317–1331.

Sun, R., & Sessions, C. (1998). Learning to plan probabilistically from neural networks. Proceedings of

IEEE International Conference on Neural Networks (pp. 4-9). Piscataway, NJ: IEEE Press.

Sun, R., & Sessions, C. (2000). Learning plans without a priori knowledge. Adaptive Behavior, 8(3/4),

225-254.

Suri, R. E., & Schultz, W. (1999). A neural network model with dopamine-like reinforcement signal

that learns a spatial delayed response task. Neuroscience, 91, 871-890.

Sutton, R. S., & Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement. In M. Gabriel

& J. Moore (Eds.), Learning and computational neuroscience: Foundations and adaptive

networks (pp. 497-537). MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge, MA: MIT

Press.

Taatgen, N. A., & Lee, F. J. (2003). Production Compilation: A simple mechanism to model complex

skill acquisition. Human Factors, 45(1), 61-76.

Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition.

Cognitive psychology, 21(2), 233–282.

Tesauro, G. J. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM,

38, 58-68.

Thrun, S. (1995). Learning to play the game of chess. In G. Tesauro, D. Touretzky, & T. Leen (Eds.),

Advances in Neural Information Processing Systems 7.

Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating planning and

learning: the PRODIGY architecture. Journal of Experimental & Theoretical Artificial

Intelligence, 7(1), 81-120.

Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING 51

Walsh, V., & Butler, S. R. (1996). The effects of visual cortex lesions on the perception of rotated

shapes. Behavioural brain research, 76(1-2), 127–142.

Wolff, J. G. (1982). Language acquisition, data compression and generalization. Language &

Communication, 2(1), 57-89.

