
Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING                                                                1 
 

Including cognitive biases and distance-based rewards in a 

connectionist model of complex problem solving 

 

Frédéric Dandurand 1+ 

Thomas R. Shultz 2 

Arnaud Rey 3 

 

+ Corresponding author 

1 Department of Psychology, Université de Montréal 

90 Vincent-d'Indy Avenue, Montreal, Quebec, H2V 2S9, Canada 

Tel: ++1 514 343 4617 

Email: frederic.dandurand@gmail.com 

2 Department of Psychology and School of Computer Science, McGill University 

1205 Dr. Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada 

Tel: ++1 514 398 6139 

Email: shultz@psych.mcgill.ca 

3 Laboratoire de Psychologie Cognitive, CNRS – Aix-Marseille University 

3,  place Victor Hugo, 13331 Marseille, France 

Tel : ++33 413 550 995 

Email: arnaud.rey@univ-provence.fr 

 



Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING                                                                2 
 

Abstract 

We present a cognitive, connectionist-based model of complex problem solving that integrates 

cognitive biases and distance-based and environmental rewards under a temporal-difference 

learning mechanism. The model is tested against experimental data obtained in a well-defined and 

planning-intensive problem. We show that incorporating cognitive biases (symmetry and simplicity) 

in a temporal-difference learning rule (SARSA) increases model adequacy – the solution space 

explored by biased models better fits observed human solutions. While learning from explicit 

rewards alone is intrinsically slow, adding distance-based rewards, a measure of closeness to goal, to 

the learning rule significantly accelerates learning. Finally, the model correctly predicts that explicit 

rewards have little impact on problem solvers’ ability to discover optimal solutions. 
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1.  Introduction 

Research in problem solving has traditionally focused on the discovery of explicit strategies using 

mechanisms that emphasized search (e.g., Newell, 1990), induction (e.g., Holland, Holyoak, Nisbett, 

& Thagard, 1986), use of heuristics (e.g., Gigerenzer, Todd, & ABC Research Group, 1999; Polya, 

1957) and reasoning by analogy (e.g., Holyoak & Thagard, 1996). Computational models have 

reflected these emphases. There has been, however, an ever growing interest in learning, modeling 

how cognitive agents learn to solve problems. A number of mechanisms have been proposed, 

including chunking the results of look-ahead search into a new rule (Newell, 1990), compiling rules 

that fire successively into  a new rule (Taatgen & Lee, 2003), and reinforcement learning of rules (Fu 

& Anderson, 2006), or strategy precedence (Rieskamp & Otto, 2006). 

Learning to solve problems is the central theme of the current paper. We adopt a theoretical 

framework grounded in reinforcement learning theory: using a temporal difference (TD) learning 

mechanism (Sutton & Barto, 1998), problem solvers learn to accurately predict how much reward to 

expect, that is, the long-term value of taking some action in some problem state. TD-learning and 

reinforcement learning in general have a long history of success, both for biological and for machine 

learning. Regarded as biologically plausible (Houk, Adams, & Barto, 1995), TD-learning has 

successfully captured many classical and operant conditioning phenomena (Suri & W. Schultz, 1999; 

Sutton & Barto, 1990).  

Although often assimilated with simple and low-level associative learning, reinforcement learning has 

also been used recently for the modeling of high level cognition, a qualification that applies to 

problem solving (e.g., Daw & Frank, 2009). Research on human problem solving is largely dominated 

by classical information processing theories (Holyoak, 1995). These theories rest on the problem-

space hypothesis (Newell, 1980) which states that problems can be described in terms of states, 

operators and constraints. It is perhaps underappreciated that these concepts have direct 

equivalents in reinforcement learning, making information processing theories and reinforcement 

learning compatible and complementary.  

TD-learning is a powerful mechanism by which problem solvers can learn complex tasks by trial-and-

error based on infrequent and impoverished explicit rewards – as little as one binary bit of 

information (success or failure) for the evaluation of sequences containing multiple actions. Learning 

with so little information is possible, but notoriously slow. So called ‘explicit environmental rewards’ 

can be positive (e.g., food) or negative (e.g., electric shocks); and they are typically modeled as real 
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numbers whose sign corresponds to the valence (positive or negative) and magnitude to the strength 

of the reward. 

In previous work, we explored how a computational model could learn to solve a complex problem 

based on binary environmental rewards (Dandurand & Shultz, 2009). The model was able to learn 

the task using TD-learning, but exhibited two important limitations: (1) model-selected actions were 

more complex and asymmetrical than human-selected actions, and (2) models learned much more 

slowly than humans. 

In the current paper, we address these limitations by extending a basic TD-learning algorithm with 

two novel terms: (1) cognitive biases towards simplicity and symmetry, and (2) self-generated 

rewards based on the closeness to goal, dubbed distance-based reward (DBR): the closer an agent 

gets to the goal state, the more DBR it gets. DBR is a distance-reduction heuristic similar to both hill-

climbing and means-ends analysis. Our hypothesis is that the dense and rich information provided by 

distance-based rewards can make reinforcement learning a viable candidate in the problem-solving 

domain.  

1.1 Models of problem solving 

In this section, we review some influential systems for problem solving that use TD-learning or 

distance-reduction heuristics. Machine learning systems and cognitive models are both considered. 

Table 1 provides a summary characterization of these systems. To be designated as cognitive, 

systems have to be explicitly compared to experimental data of human problem solving, or at least 

be presented and discussed in the context of cognitive or neurological plausibility. The second 

column indicates whether a system uses a neural network (NN) implementation1. Finally, the last 

three columns indicate whether a system implements, respectively, TD-learning, distance-reduction 

heuristics, and cognitive biases. As we elaborate in the following sections, the table suggests that the 

cognitive model presented here offers a unique combination of TD-learning, distance-reduction, 

cognitive biases and connectionism.  

 

 

 

                                                           
1
 In contrast, many traditional problem solving models store knowledge as explicit rules or productions. 
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cognitive 

model 

neural 

networks 

TD-

Learning 

distance-

reduction 

heuristics 

cognitive 

biases 

(Bianchi, Ribeiro, & Costa, 2008; 

Polat & Abul, 2002; Provost, Kuipers, 

& Miikkulainen, 2006) 

No No Yes Yes No 

(Kaplan & Güzeliş, 2001; Parks, 

Levine, & Long, 1998) 
No Yes No No No 

(Baldassarre, 2002; Rummery, 1995; 

Tesauro, 1995; Thrun, 1995) 
No Yes Yes No No 

(Asgharbeygi, Nejati, Langley, & 

Arai, 2005; Nason & Laird, 2004) 
Partially No Yes No No 

(Sun & Sessions, 1998, 2000) Partially Yes Yes No No 

(Langley & Allen, 1993; Langley, 

Choi, & Rogers, 2009) 
Partially No No Yes No 

(Busemeyer & Myung, 1992) Yes No No Yes No 

(Kaplan & Güzeliş, 2001; Parks et al., 

1998) 
Yes Yes No No No 

(Fu & Anderson, 2006; Rieskamp & 

Otto, 2006) 
Yes No Yes No No 

(Akyurek, 1992; Veloso et al., 1995) Yes No No Yes No 

(Cutini, Ferdinando, Basso, Bisiacchi, 

& Zorzi, 2008; Simen, Polk, Lewis, & 

Freedman, 2002) 

Yes Yes No No No 

(Dandurand & Shultz, 2009) Yes Yes Yes No No 

Model described in this paper (DBR) Yes Yes Yes Yes Yes 
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Table 1 - Characteristics of some influential problem solving models and systems. Columns indicate if the 

model is cognitive, if it uses neural networks (NN), and whether it implements TD-learning, heuristics, or 

cognitive biases for simplicity and symmetry. 

1.1.1 Connectionist systems and models for problem solving 

Connectionist-based systems for reinforcement learning have been successfully developed in the 

machine learning community to solve complex problems, for instance, robot navigation (Baldassarre, 

2002; Rummery, 1995), backgammon (Tesauro, 1995) and chess (Thrun, 1995). Other systems used 

neural networks to learn Tower of Hanoi problems in unsupervised fashion (Kaplan & Güzeliş, 2001; 

Parks et al., 1998).  

While using neural networks is interesting from a psychological perspective, the primary concern of 

machine learning is achieving the best possible performance while biological and psychological 

plausibility of the mechanisms involved are often of limited interest. As far as we know, only a few 

connectionist models of human problem solving have been proposed (e.g., Cutini et al., 2008; Simen 

et al., 2002), and none address how learning can occur by reinforcement (except Dandurand & 

Shultz, 2009).  

1.1.2 Reinforcement learning in symbolic cognitive models 

There are a few symbolic-rule systems that use reinforcement learning for problem solving. An ACT-R 

model recently simulated nondeliberative decision making on a task involving sequential choices (Fu 

& Anderson, 2006). Similarly, a symbolic model called SOAR (State Operator And Result) has been 

proposed that uses reinforcement learning to optimize the choice of rules that maximize expected 

rewards (Nason & Laird, 2004). Reinforcement learning was used in another SOAR model to optimize 

search under limited resources when exhaustive inference could not be performed (Asgharbeygi et 

al., 2005). Finally, Rieskamp and Otto (2006) presented a theory in which strategy selection for 

solving inference problems is based on reinforcement learning. 

1.1.3 Extracting rules based on reinforcement learning 

In contrast to symbolic models which require prior knowledge in the form of explicit rules, Sun and 

Sessions (1998, 2000) proposed an approach in which explicit rules are instead extracted a-posteriori 

from a system trained using reinforcement learning. Expected values are learned in a 

backpropagation neural network. The approach was tested on two robotics tasks and on a minefield 

navigation task for which human performance had been previously documented (Gordon, A. Schultz, 

Grefenstette, Ballas, & Perez, 1994; Sun, 1997). 



Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING                                                                7 
 

1.1.4 Cognitive biases 

In the present model, we consider two important and well-documented cognitive biases: simplicity 

and symmetry. To our knowledge, no previously existing computational model of human problem 

solving explicitly implements such biases. 

Firstly, cognitive biases towards simplicity can be found across the cognitive system, including low- 

and high-level perception, concept learning, categorization, language acquisition, scientific inference 

and high-level cognition (e.g., Chater & Brown, 2008; Feldman, 2003, 2009; Freyd & Tversky, 1984; 

Pizlo, 2008; Pothos & Chater, 2002; see Chater & Vitányi, 2003 for a review). A leading hypothesis to 

explain these simplicity biases is that much of cognition concerns compression (Wolff, 1982) and 

elimination of redundancy (Barlow, Kaushal, & Mitchison, 1989). Not only are the resulting 

representations more cognitively economical to store and process, there is also evidence that simpler 

representations tend to generalize better (e.g., Son, Smith, & Goldstone, 2008).  

Secondly, the symmetry bias is thought to have an evolutionary basis, as generalization to mirror 

stimuli is often adaptive; for instance, an organism that learns to avoid a danger coming on the right 

side would certainly benefit from also being able to avoid this danger coming from the left side, 

without needing to be trained again (Rollenhagen & Olson, 2000). Symmetry biases have been 

directly measured in the brain; for instance, the inferotemporal neurons of monkeys trained to 

recognize wire-frame objects generalized their responses to stimuli rotated by 180 degrees around 

the vertical axis (Logothetis & Pauls, 1995). An important mechanism in this spontaneous 

generalization to mirror-symmetry appears to be the interhemispheric connectivity due to the corpus 

callosum. In fact, resection of the corpus callosum destroys this spontaneous generalization (Beale, 

Williams, Webster, & Corballis, 1972). While often adaptive, spontaneous mirror-symmetry 

generalization can produce errors and confusions, and such mirror-symmetry confusions are in fact 

ubiquitous (Corballis & Beale, 1976). This mirror-symmetry bias has important implications for high-

level cognitive tasks; for instance, spontaneous generalization was found in naming tasks (Tarr & 

Pinker, 1989) and visual priming (Biederman & Cooper, 1991; Fiser & Biederman, 2001). 

Furthermore, children learning to read typically go through a mirror stage in which they confuse 

mirror letters such as b and d; and can write indifferently in both directions (Walsh & Butler, 1996). 

Children need to learn to break or inhibit the symmetry bias to avoid excessive generalization. In 

expert readers, symmetry breaking appears specific to word stimuli, and remains present for picture 

stimuli (Dehaene et al., 2010).  

In problem solving, simplicity and symmetry biases involve the tendency to choose simple and 

symmetrical actions or solution steps. Such biases can be useful for guiding problem solving – for 
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instance, a useful heuristic called divide-and-conquer involves breaking down a complex task in 

simpler steps, that are often regular and applied recursively (Polya, 1957). On the other hand, 

simplicity and symmetry may instead hinder the capacity of problem solvers to find appropriate 

solutions, and are often associated with functional fixedness (Duncker, 1945), problem solving sets 

(Luchins, 1942), and conceptual blocks (Adams, 1974). In the gizmo task studied in the present 

research, we previously found that humans tended to select simpler and more symmetrical solution 

steps than correct solutions require (Dandurand, Shultz, & Onishi, 2007). 

1.1.5 Distance-reduction heuristics 

A number of models have been proposed that use some distance-reduction heuristic, namely hill 

climbing or means-ends analysis. In a mathematical approach to human decision making, Busemeyer 

and Myung (1992) used hill-climbing to model how individuals learn to fine tune decision rules. 

Means-ends analysis has been studied and implemented in symbolic cognitive models, namely 

Prodigy (Veloso et al., 1995), SOAR (Akyurek, 1992; Newell, 1990) and ICARUS (Langley & Allen, 1993; 

Langley et al., 2009). In these models, means-ends analysis was used to guide the generation of 

problem solving plans or strategies based on explicit rules without involving reinforcement learning. 

Finally, a few proposals for combining distance-reduction heuristics and reinforcement learning have 

been proposed for machine learning applications (Bianchi et al., 2008; Polat & Abul, 2002; Provost et 

al., 2006).  

1.2 Organization of the article 

The rest of the article is organized as follows. We first briefly present experimental data from 

participants who learned to solve a complex problem, the Gizmo Problem Solving Task, using explicit 

environmental rewards. We also review a previously proposed computational model of these data 

and its limitations (Dandurand & Shultz, 2009). Second, we introduce an extended learning rule that 

includes cognitive biases and a distance-reduction heuristic as improvements over this previous 

model. Third, we make novel predictions using this resulting new model of human performance on 

learning to solve the Gizmo Task when provided no explicit feedback. Finally, we present new 

experimental data involving the Gizmo Task that tests these predictions. 

1.3 The Gizmo Problem Solving Task 

The present paper extends previous research on a complex problem, called the Gizmo Problem 

Solving Task, that consists in finding which gizmo in a set of 12 identical-looking gizmos is heavier or 

lighter than the others using at most three weighings on a two-sided balance scale (Dandurand & 

Shultz, 2009; previously used in: Dandurand, Bowen, & Shultz, 2004; Dandurand, Shultz, & Onishi, 



Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING                                                                9 
 

2008). Our approach is consistent with Newell’s (1973) recommendation to focus on a single complex 

problem and study it thoroughly. Variants of this class of problems are well known logical-

mathematical tasks (Guy & Nowakowski, 1995; Halbeisen & Hungerbuhler, 1995) and a version of 

this class of problems, called the Coin problem was used in a classic psychology experiment on hints 

(Simmel, 1953).  

1.3.1 Experiment with human participants 

Among the data previously collected (Dandurand et al., 2004), we focus on a data sample of 20 

participants (14 females and 6 males) consisting of McGill University undergraduate (N = 13) and 

graduate (N = 7) students.  

On each trial, a computer program2  (illustrated in Figure 1) randomly selected a target gizmo and 

assigned it a heavy or a light weight. Participants were asked to determine, with 3 uses of a balance 

scale, which of the 12 gizmos was either heavier or lighter than the others. Because gizmos look 

identical, the target gizmo could only be identified based on weight. We asked participants to keep 

track of their hypotheses about gizmo weights, with 7 choices for labeling a gizmo: (1) unknown 

(heavy, light or normal weight), (2) heavy or normal weight, (3) light or normal weight, (4) heavy or 

light weight, (5) heavy, (6) light, and (7) normal. 

At the beginning of a trial, all 12 gizmos were labeled as unknown weight. Participants installed a 

certain number of gizmos on the balance scale; any combination of gizmos was allowed. They would 

then press the weight button and the scale would tip or remain balanced to indicate one of three 

results: left heavier, right heavier, or equal weight. Participants would then update the gizmo labels 

to reflect their updated hypotheses about possible weights of each gizmo, and typically repeat this 

procedure twice (for weighings 2 and 3) with different combinations of gizmos. Participants gave 

their answer by pressing the Answer button (usually after the third weighing, although they could 

use fewer). Acceptable answer states consisted of labeling one gizmo as Heavy or Light, and the 11 

others as normal. Participants had to answer, and thus, they would need to guess whenever they 

were left with several possibilities after three weighings. Participants were given explicit feedback 

about the accuracy of the answer provided (correct or incorrect), but they never received any 

evaluative feedback for their first and second weighings. A new trial was then presented, with 12 

gizmos labeled as U, and a different target selected at random. Participants worked on trials for 30 

                                                           
2
 A play-only version of the Gizmo Task, illustrating the reinforcement learning group, is available at:  

http://lnsclab.org/html/BallsWeightExperiment/PlayVersion/play.html 
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minutes. Appendix 1 presents an exhaustive description of the solution space, that is, how this task 

can be solved correctly without guessing. 

  

Figure 1 - The Gizmo Problem Solving task. This example shows the third weighing in which 11 gizmos have 

been determined to be of Normal weight, and one is of Unknown (U) weight. As a selection action, the 

participant decided to install 1xU vs. 1xN. The balance scale result indicates that the gizmo labeled as U is 

lighter than the other one. 

 

We measured accuracy as the proportion of trials on which participants found the correct target 

gizmo. We also measured the asymmetry and the complexity of the selected actions. Selection 

actions, or simply actions, consist of two subsets of labeled gizmos to be installed respectively on 

each side of the balance scale; see Table 2 for some examples. To measure complexity, we sum the 

total number of labels present on each side of the scale. To measure asymmetry, we count the total 

number of differences in labels between left and right sides of the scale, i.e., whenever a label is 

present on one side of the scale but not on the other, one unit of asymmetry is added. Table 2 shows 

examples of complexity and of asymmetry measures. For this problem, the upper bound of 

complexity is 12 when items of each of the 6 label categories (U, LN, HN, L, H and N) are installed on 

both sides of the scale. The upper bound of asymmetry is 6 when items of each category are installed 

on the scale without a matching element on the other side. 
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 Example of gizmos installed  

 Left Right Index 

Complexity HN HN N N 2 

 HN LN LN HN LN N 5 

Asymmetry HN HN N N 2 

 LN LN LN LN LN LN 0 

 HN LN LN HN LN N 1 

Table 2 – Example computations of complexity and asymmetry for selection actions under the column 

labeled “Example of gizmos installed”. 

1.3.2 Previous computational model 

In a previous model, we used TD-learning to successfully learn to solve gizmo problems using 

environmental rewards only (Dandurand & Shultz, 2009). Details of the model can be found in the 

methods section below, as the present model extends and improves on that previous model.  

1.3.3 Comparison of human and model performance 

Participants completed a mean of 18.6 trials. Models were trained to a level roughly equivalent to 

humans. First, mean accuracy of participants was 0.58 (SE = 0.04) while model accuracy was lower 

0.22 (SE = 0.02), but well above chance3 (t(40)=6.9, p<0.001). Second, participants selected on 

average less asymmetrical and complex actions (asymmetry: 0.96; complexity: 2.35) than models did 

(asymmetry: 1.23, t(40)=2.6, p<0.05; complexity: 2.74, t(40)=3.8, p<0.001).  

To address these limitations, we now present a new and improved model of the gizmo problem 

solving task. As mentioned, we hypothesize that the denser and richer information provided by 

distance-based rewards will allow models to learn faster, and that including cognitive biases will 

result in more human-like actions.  

2.  Methods 

We now provide more details of the task and the model. Problem solvers need to alternate between 

two sub-tasks: (1) choosing which gizmos to install and weigh on the balance scale (the selection 

                                                           
3
 Given 12 gizmos x 2 possible weights (heavy or light), chance level of success was 1 in 24, or about 0.04. 
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task) and (2) keeping track of information about possible gizmo weights based on the result of the 

weighing (the labeling task). Figure 2 combines a task analysis of the gizmo task with a reinforcement 

learning framework showing relationships between the learning agent and its environment.  

 

 

Figure 2 – Task analysis and agent-environment interactions for the gizmo problem solving task. From the 

perspective of the agent making selection decisions, the ideal agent performing label updates is part of the 

environment. 

One of the challenges in modeling this problem is that the two sub-tasks (selection and labeling) 

form a loop and are thus mutually dependent: the output of one is the input of the other. Therefore, 

finding the optimal action in one sub-task depends on the other sub-task. Because learning 

progresses on both sub-tasks, optimal actions are moving targets. As previously (Dandurand & Shultz, 

2009), we present a model of the selection task only, assuming optimal updating of labels, thus 

avoiding the moving-target issue. The ideal agent for label updates can be considered as part of the 

environment as far as the gizmo selection process is concerned (see Figure 2). The fact that humans 

performed 95.15% of labeling in accord with an optimal strategy (N = 3444) provides support for the 

use of such an optimal agent. Sub-optimality consisted in errors in label use (incorrect or inconsistent 

labeling), and in failures to update labels when new information was available4. Errors were often 

                                                           
4
 For instance, in 0.5% of cases, participants incorrectly update labels U to N on the lighter side, appearing to 

ignore the fact the target can be light, while correctly updating labels U to HN on the heavier side of the scale. 

Selection agent (Determine which gizmos to weigh)

Initial state (all gizmos labelled as Unknown)

Solution found? 

Three weighings used?

Yes

Correct? 

Yes Success (1)Yes

Failure (-1)No

Not solved (-0.5)

Use scale (do a weighing)

Optimal agent for label updates (Keep track of weight hypotheses)

Action

Environment

State

Environmental
reward

Compute distance to goal

DBR

No

No
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visibly due to GUI-interface manipulation and inattention. In incorrect labeling, participants often 

generated solutions whose logic strongly suggests they mentally kept track of the gizmo weights 

despite neglecting or forgetting to update labels explicitly.  

2.1 Selection agent 

The selection agent enumerates the exhaustive set of possible actions from the current state. States 

are characterized by the number of gizmos marked using each label type (e.g., 12xU; 4xHN 4xLN 4xN; 

and 11xN 1xH), and actions consist of two subsets of labeled gizmos to be installed respectively on 

each side of the balance scale. Actions are selected for processing under two constraints. First, we 

consider only actions that have the same number of gizmos on both sides of the scale, because 

humans selected equal numbers of gizmos in 98.6% of their actions, the remaining fraction usually 

due to GUI manipulation errors. This very likely reflects the fact that the participants in the 

experiment -- university students -- had prior knowledge and experience using a balance scale, and 

clearly knew they had to install the same number of gizmos on each side to get a meaningful and 

informative result. This human expertise with balance scales was implemented as a selection agent 

that considered only actions that have the same number of gizmos on both sides of the scale. 

Second, we drop the heavy-light label because humans almost never used it. After these 

simplifications, the search space contains a total of 6187 states and 5,671,402 actions, i.e., a mean of 

916 actions for each state. 

For each action that can be taken from current state, the selection agent computes the expected 

reward or quality Q(st,at) of the given action (at) taken from the current state (st) using a cascade-

correlation neural network (Cascor: Fahlman & Lebiere, 1990). The selection agent can only keep 

track of the N best action alternatives5. After the list of possible actions is completely processed, the 

agent selects one action to perform from its action buffer such that the probability of selecting some 

action is proportional to the estimate of the expected rewards of that action, a method known as 

Softmax (Sutton & Barto, 1998). As it progresses in the problem space, the selection agent improves 

its estimate of expected reward or quality. Estimates of expected rewards generated by cascor are 

improved using a modified version of SARSA (Sutton & Barto, 1998), which in turn become targets for 

cascor to learn. Each of these aspects is described in detail in the following sections. 

                                                           
5
 Due to various cognitive limitations, humans probably also have a limited number of alternative actions they 

can select from, at any given moment. 
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2.2 SARSA: The standard TD-learning technique 

As an extension of the previous model (Dandurand & Shultz, 2009), the proposed model is based on 

SARSA, a standard reinforcement-learning algorithm from the class of temporal-difference 

techniques (Sutton & Barto, 1998). SARSA was named after the quintuple that the algorithm uses (st, 

at, rt+1, st+1, at+1): 

        tt111tttt a,sQ,a,sQ a,sQ   ttt asQr         Equation 1 

where s is a state; a is an action; r is a reward; indices t and t+1 are used for current and next states 

and actions respectively; α is a learning rate; γ is a discount factor; and Q (for quality or value) 

indicates how much discounted rewards the agent expects to obtain for taking action a in state s. Q 

is thus an estimation of the long-term value of taking some action a from state s. To estimate Q, 

SARSA uses the reward actually obtained in the next state (rt+1), and also adjusts its estimate based 

on the discrepancy between the current Q value and the Q value of the next state-action pair 

(Q(st+1,at+1)-Q(st,at)). In other words, if the next state-action pair has little value, then the estimate for 

the current state-action pair decreases. This mechanism allows some form of propagation of Q values 

back in time (from t+1 to t), hence the name temporal-difference for this class of techniques. 

In the current paper, we extend standard SARSA to cover distance-reduction heuristics and cognitive 

biases. Before we present the extended equation, we first describe how we compute distance to goal 

as well as selection complexity and asymmetry. 

2.3 Distance-based rewards (DBR) 

Preliminary data from think-aloud protocols of participants solving gizmo problems provides 

evidence for the use of a distance-reduction heuristic. Namely, participants reported trying to find 

the gizmos of normal weight and exclude them from possible solutions. This narrowing of possible 

targets allows them to get closer to the solution. 

We measure distance to goal as the sum over all 12 gizmos of their individual distances, as described 

in Table 3. We hypothesize that problem solvers can compute, or at least estimate, the total distance 

to goal as the sum of individual distances. For example, a state consisting of 6xHN and 6xLN has a 

distance of 12. A goal state such as 1xH and 11xN has a distance of 0.5, and the initial state (12xU) 

has a distance of 24. Solution states have a distance of 0.56. 

                                                           
6
 If distances are set to 0 for Heavy, Light and Normal gizmos, then any combination of these three gizmo labels 

are valid (e.g., 4xH, 2xL and 6xN), and thus solution states are not unique. 
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Label Distance 

Unknown (U) 2 

Heavy or Light (HL) 1 

Heavy or Normal (HN) 1 

Light or Normal (LN) 1 

Heavy (H) 0.5 

Light (L) 0.5 

Normal (N) 0 

Table 3 - Distance to solution used for means-ends analysis. We set distance of heavy and light labels as 0.5 

to make the solution unique.  

We define distance-based rewards (DBR) as follows: 

 

 

 max

12

1

1ln

1ln

1
dist

id

DBR
i


















        Equation 2 

where d(i) are the distances to goal of each gizmo i based on Table 3, and distmax is the maximal 

possible distance to goal, here 24. The equation is globally constructed as (1-(normalized distance to 

goal)), so that the shorter the distance to the goal the higher the distance-based reward. Normalized 

distance to goal uses the total sum of distances for individual gizmos, and 1 is added to avoid ln(0) 

which is not defined. The denominator is a normalization term to scale the range of normalized 

distance to goal from 0 to 1. Figure 3 presents Equation 2 as a plot. 
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Figure 3 - Distance-based reward as a function of total distance to goal. 
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Where: 

• rt+1 is an environmental reward: +1 for correct answer, -0.5 when the system did not give any 

answer after three weighings, and -1 for an incorrect answer. 

• dt+1 is a distance-based reward (DBR), varying between 0 and 1. 

• c(at) is the cognitive cost penalty for selecting an action.  

• µ, β and λ control the respective contributions of environmental rewards, distance-based 

rewards and cognitive cost penalty respectively. 

• α is a learning rate (set to 0.1).  

• γ is a discount factor (set to 1.0)7 

2.6 Action selection 

When learning to solve the task, an agent must decide what selection action to perform. We used a 

Softmax approach, as done previously (Dandurand & Shultz, 2009). Under Softmax, the higher the 

expected reward Q(st,at) for action at in state st, the greater the probability of selecting action at, see 

Equation 5. 

 

           Equation 5 

 

In other words, promising actions are taken more often, but every action has some probability of 

being selected. Similarly, humans do not always select actions they expect to be the best. They often 

try out apparently less optimal solutions to see what happens, resulting in further exploration of the 

                                                           
7
 This effectively means no discounting. We chose not to discount because the problem description made no 

mention that shorter solutions should be preferred. In fact, participants produced only about 10% of solutions 

involving fewer than three weighings, some of which seemed unintended and due to GUI manipulation errors. 

Correct and reliable solutions to this problem require the maximal number of weighings allowed (Dandurand & 

Shultz, 2009). And ultimately, not discounting is appropriate for episodic tasks (Sutton & Barto, 1998). 

𝑝𝑖 =
𝑒𝑄(𝑠𝑡 ,𝑎𝑖,𝑡)

 𝑒𝑄(𝑠𝑡 ,𝑎𝑗 ,𝑡)𝑏𝑢𝑓𝑓𝑒𝑟  𝑠𝑖𝑧𝑒
𝑗=1
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solution space. In the proposed model, Softmax is applied to a small set of the best possible 

alternatives, those in the action buffer.  

2.7 Connectionist function approximator 

To compute estimates of expected rewards, the model uses a cascade-correlation (cascor) neural 

network function approximator.  A function approximator does not store Q values for every 

encountered state and action. Instead, the Q value is approximated or constructed as a function of 

states and actions (Q(st,at) = f (st,at)). The transfer function f is implemented as a neural network 

here. In contrast to lookup tables in which expected rewards are explicitly and exhaustively stored, 

neural networks exhibit interesting generalization properties. Cascade-correlation (Fahlman & 

Lebiere, 1990) is a constructive neural network algorithm for supervised learning. In cascor, 

computational units are recruited as necessary to solve some task, and installed as new hidden units. 

This avoids having to design a network topology a-priori, and allows the topology to change as 

needed. Cascade-correlation has been used successfully to model several cognitive tasks, on which it 

often performed better than standard backpropagation (e.g., Shultz, 2003; Shultz, Mysore, & Quartz, 

2007). 

Cascor learns by alternating between input and output phases. In input phases, computational units 

(here, sigmoid units) in a recruitment pool are trained to maximize covariance with residual network 

error. At the end of input phase, when covariance does not increase anymore, the unit with the 

highest covariance is inserted and connected to the current network structure. In this project, we use 

a variant of cascor called sibling-descendent cascade-correlation (SDCC: Baluja & Fahlman, 1994). 

SDCC can choose to install units on the current deepest hidden layer (sibling units) or on a new layer 

(descendent units). SDCC thus creates a greater variety of network topologies, from deep to flat, to 

suit the problem being learned. In output phases, connection weights feeding output units are 

trained to minimize network error. Cascor is trained using an algorithm for training feed-forward 

networks such as QuickProp (Fahlman, 1988) in both input and output phases. Details of cascor 

parameter settings can be found in the Appendix 2. 

SARSA was interfaced with cascor using a caching system (Rivest & Precup, 2003). SARSA is an online 

technique, generating a data pattern after every action taken. In contrast, Cascor works in batch 

mode, processing multiple data patterns at once. A cache is thus required to buffer data patterns 

until there are enough to make a batch to train cascor (here, 100 patterns). To ensure that SARSA 

uses up-to-date patterns, the proposed system first looks for patterns in the cache. If a pattern is not 

found, cascor is used to estimate the expected reward or quality (Q) of the state-action pair, which is 

inserted in the cache. All Q value updates are performed in the cache. When a batch contains enough 
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patterns, the batch is converted into a training set of 100 patterns that cascor learns, after which the 

cache is emptied and is ready to prepare the next batch of 100 patterns. The cache thus contains up-

to-date values as calculated by SARSA for recently traversed state-action pairs. 

2.8 Input and output coding 

When converting cached patterns into a training set for cascor, a training pattern is generated for 

every state-action pair present in the cache. Inputs are built as the concatenation of state and action 

data, resulting in 24 inputs: 6 to code the state and 18 to code the action.  

The state indicates the number of gizmos marked using each label type. We drop the heavy or light 

(HL) label because humans almost never used it. The 6 inputs for state code the proportion of gizmos 

of each label type in order: U, HN, LN, H, L, N. For example, to indicate the following state: 4U, 

4HN,4LN, 0H, 0L, 0N, the input vector is 0.33, 0.33, 0.33, 0.0, 0.0, 0.0, where 0.33 = 4/12.  

The action indicates how many gizmos of each label type to install in each container. There are three 

containers: gizmo bank, left side of scale and right side of scale. For each container, the proportion of 

gizmos of each label is given in the same order as for the state. For example, if all 12 gizmos are 

labeled as unknown, and the selected action consists in weighing 6 gizmos on the left side of the 

scale (1/2 of 12 = 6) against 6 gizmos (1/2) on the right side, leaving no gizmo in the bank, the input 

is: 1, 0, 0, 0, 0, 0 (State); 0, 0, 0, 0, 0, 0 (B: Bank);  0.5, 0, 0, 0, 0, 0 (L: Left side of balance scale);  0.5, 

0, 0, 0, 0, 0 (R: Right side of balance scale).  

The output is a single continuous value coding the network’s estimation of the expected reward or 

quality of the state-action pair presented at the input. The sigmoid function of the output unit is 

scaled to match the range of possible rewards. 

2.9 A numerical example 

In this section, we present a fictive example to illustrate model processing for a single trial 

comprising 3 weighings. To fully exercise the model, we set learning parameters as follows: µ = 1.0, β 

= 1.0 and λ = 1.0, meaning that the model learns from both environmental (µ) and distance-based 

rewards (β) under cognitive cost penalty (λ). Action buffer size is set to 4. To refer to the multiple 

time steps involved in a trial, the following notation is used: t, t+1 and t+2 refer to processing that 

lead to the first, the second and the third weighing, respectively; and t+3 refers to what follows the 

third weighing (i.e., relating to the terminal state reached).  
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Following Figure 2, we have, for the first weighing: 

1. Initial state. A trial begins with all gizmos labeled as Unknown, i.e., st =12xU. 

2. The selection agent determines which gizmos to weigh: 

a. List actions. The selection agent enumerates all possible actions from this state.  

b. Compute Q values for each action in the list using cascor8.  

c. Select an action from buffer using Softmax. 

3. Use scale (do a weighing): The model randomly selects and installs gizmos on the scale 

according to the action selected. Here, let’s say gizmos are installed as follows: gizmo 

numbers 2, 3, 9, 1, 6 and 10 on the left side of the scale, and numbers 5, 7, 4, 12, 8 and 11 on 

the right side. Because gizmo 7 is heavier, the right side of the scale will be heavier.  

4. Optimal agent for label updates: Gizmos on the left (lighter) side of the balance scale are 

updated to 6xLN; whereas gizmos on the right (heavier) side are updated as 6xHN. Thus st+1 = 

6xHN, 6xLN.  

5. Three weighings used? Answer: No, so continue to the next weighing. 

6. Compute distance to goal (see Table 3). Here, distance is 6x1+6x1 = 12, and dt+1 = 1- ln (1+12) 

/ ln (25) = 0.203 using Equation 2. 

The process is repeated for weighings 2 and 3, and various measures are collected, as shown in Table 

4. Note that, after weighing 3, “Three weighings used?” is true, but because there are still 2xHN, 

“Solution Found” is false and an environmental reward of -0.5 is obtained for this trial. After the trial 

is completed, the model updates Q-value estimates, as shown in the last row of Table 4 (values from 

the current or the next column may be used depending on indices t and t+1 in Equation 4), and 

writes these updates back to the cache. 

 

 

 

 

 

                                                           
8
 Note that, whenever a cascor access is made (read or write), the model verifies the cache. If the cache is full 

(that is, contains 100 patterns), a batch is created and used for training of cascor. This consolidates recent 

SARSA updates into the transfer function (state-action pairs to Q values) of cascor.  
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 Time t t+1 t+2 t+3 

st 12xU 6xHN, 6xLN 6xHN, 6xN 2xHN, 10xN 

at (B) 0xU; (L) 6xU; (R) 6xU 
(B) 6xHN; (L) 3xLN; (R) 

3xLN  

(B) 5xHN, 1xLN; (L) 

3xLN; (R) 2xLN, 1xHN  
N/A 

Scale result Right side heavier Equal weight Left side heavier N/A 

rt N/A 0 0 -0.5 

dt 
0.0 = 1-

ln(1+24)/ln(1+24) 

0.203 = 1-

ln(1+6x1+6x1)/ln(1+24) 

0.396 = 1-

ln(1+6x1)/ln(1+24) 

0.659 = 1-

ln(1+2x1)/ln(1+24) 

c(at) -0.693 = -ln(2) -0.693 = -ln(2) -1.386 = -ln(1+3) N/A 

Initial 

Q(st,at) 
0.4 0.5 0.3 N/A 

Updated 

Q(st,at) 

0.361 = 

0.4+0.1*(0+0.203-

0.693+0.5-0.4) 

0.450 = 

0.5+0.1*(0+0.396-

0.693+0.3-0.5) 

0.147 =0.3+0.1*(-

0.5+0.659-1.386+0-0.3) 
N/A 

Table 4 - Numerical value for this example of the measures used by SARSA, and other information about 

states, actions and outcomes. 

2.10   Model testing 

Network performance is assessed after each learning episode (that is, a pass across all 24 trials). The 

model is tested on all 24 possible cases (12 gizmos x 2 weights). We measure accuracy, complexity 

and asymmetry of solutions generated. When tested, models always select the action associated 

with the highest expected reward. A similar behavior may be expected of humans: when tested, they 

would do their best (i.e., pick actions with highest expected reward), but they would explore more 

alternatives when learning (i.e., use a technique analogous to the proposed modified Softmax). 

3.  Results 

The present model has four important parameters: (1) the action buffer size, (2) the new SARSA term 

for distance-based rewards, (3) the new SARSA term for cognitive cost penalty to enforce simplicity 

and symmetry biases, and (4) the usual SARSA term for environmental rewards. To avoid a 

combinatorial explosion of parameter combinations, we devised a systematic approach that varies 

one parameter at a time. 
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In a first simulation, we investigate whether models can learn the task with distance-based rewards, 

i.e., without any explicit environmental rewards and cognitive biases. We manipulate the action 

buffer size to study its effect on performance, and seek an appropriate size for further simulations. In 

a second simulation, we compare learning under various combinations of environmental rewards 

and distance-based rewards with an appropriate action buffer size and no cognitive biases. Finally, in 

the third simulation, we explore how the addition of cognitive biases for symmetry and simplicity 

improves model coverage. 

3.1 Simulation 1 – Learning using distance-based rewards (DBR) 

In the first simulation, we ask whether models can learn the task with distance-based rewards only (β 

= 1.0), i.e., without any environmental rewards (µ = 0.0). To study its effect on learning, we vary the 

action buffer size (i.e., the number of options n considered by Softmax) from 1 to 10. We use no 

cognitive bias (λ = 0.0). Networks are trained to perfect accuracy (1.0), or for a maximum of 1000 

episodes. We perform 20 replications per buffer size level with different initial conditions, for a total 

of 200 simulations. 

Accuracy results are shown in Figure 4, the number of cascor recruits in Figure 5, and number of 

episodes in Figure 6 to reach the performance showed in Figure 4. As we can see in Figure 4, models 

successfully learned the task with distance-based rewards only to near-perfect accuracies (98% to 

100%) for action buffer sizes above 3. 

 

Figure 4 – Model accuracy learning with distance-based rewards only as a function of action buffer size, with 

standard errors. 
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Figure 5 – Number of cascor recruits to reach near-perfect performance (see Figure 4) in model learning with 

distance-based rewards only as a function of action buffer size, with standard errors 

 

 

Figure 6 - Number of training episodes to reach near-perfect performance (see Figure 4) in model learning 

with distance-based rewards only as a function of action buffer size, with standard errors. 
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10. Thus, there is no significant difference in accuracy for action buffer sizes of 2 and more. Second, 

an analysis of cascor recruits reveals no significant effect of action buffer size, F < 1, as we can see in 

Figure 5. Finally, an analysis of the number of training episodes reveals a significant effect of action 

buffer size, F(9,190) = 12, p < 0.001. A complementary analysis reveals the linear trend is significant, 

F(9,190) = 12, p < 0.001, suggesting training becomes faster as action buffer size increases, as we can 

see in Figure 6. 

What action buffer size is appropriate for learning by distance-based rewards only in these 

simulations? While the principle of economy favors small sizes, results suggest that increasing buffer 

size improves learning speed and may also increase accuracy, although accuracy is already near 

ceiling for buffer sizes as small as 2. The resulting tradeoff suggests a buffer size between 2 and 5 

appears appropriate for this problem. In following simulations, we use a buffer size of 4, which offers 

a good tradeoff between accuracy and learning time. 

3.2 Simulation 2 – Learning with distance-based and environmental 

rewards 

In the second simulation, we ask whether environmental or distance-based rewards are better for 

learning this task. To study learning under different combinations of rewards in Equation 4, we run 

simulations as a two-independent-factors design: 

(1) Contribution of environmental rewards, 2 levels: used (µ = 1.0) and unused (µ = 0.0) 

(2) Contribution of distance-based rewards, 2 levels: used (β = 1.0) and unused (β = 0.0) 

Dependent variables are accuracy and number of cascor recruits. The action buffer size is set to 4, 

and no cognitive cost is included in these simulations (λ = 0).  

The condition in which models are given environmental rewards only (µ = 1.0, β = 0.0) replicates a 

condition reported previously (Dandurand & Shultz, 2009). Adjustments of the cascor parameters to 

reduce phase shifting result in faster learning. The condition in which environmental rewards and 

distance-based rewards make no contribution to learning (µ = 0.0, β = 0.0) acts as a control. Although 

these control networks are not learning to solve the task, they nevertheless adjust quality of the 

current state-action pair based on the quality of the next pair, according to Equation 4. These quality 

values are due to random initial conditions, and thus do not bear any meaningful information. 

We find that any combination of environmental or distance-based rewards enables models to learn 

the task given sufficient training. Figure 7 shows the first 200 episodes of training. For comparison 
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purposes, we also plot average performance of human participants in the control and the 

reinforcement learning groups (M = 0.47), see section 3.2.1 (Testing predictions about learning with 

and without explicit feedback) for details. It is important to recall that human performance data are 

available only for less than 1 episode9, and that the dashed line shows this as a constant. We could 

certainly expect human performance to increase with training as models do, but testing this 

hypothesis would require prohibitively long periods of training (extrapolating the data available for 

30 minutes, we can estimate that humans would complete one episode of training in about 45 

minutes). 

 

Figure 7 - Accuracy as a function of training episode for the different learning conditions (plotted every 10th 

episode), with standard error. Human performance is a point value (0.47) shown as a constant for 

comparison purposes. 

We see, first, that models trained only by environmental rewards take much more training (more 

than 100 episodes) to reach human level accuracy than the two models for which training includes 

distance-based rewards. Second, we see that models with distance-based rewards only initially 

perform better than those that also include environmental rewards. The likely explanation is that 

environmental rewards can sometimes reinforce incorrect strategies that involve guessing because 

guessing sometimes leads to the correct answer. This gives problem solvers a training signal with 

higher variance: while sub-optimal strategies are on average rewarded less than optimal strategies, 

                                                           
9
 During the 30 minutes they worked on problems, participants completed an average of about 16 trials. One 

episode comprises 24 trials (that is, all combinations of 12 gizmos and 2 possible weights, light or heavy). 
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both can be equally rewarded on some of the trials, namely those in which guessing yields a correct 

answer. In contrast, the distance-based rewards approach reliably reinforces strategies that most 

narrow down the set of possible answers, irrespectively of actual outcomes of guessing. The resulting 

variance of the training signal is thus smaller. In sum, by partially rewarding guessing, models 

learning with environmental rewards perform worse initially. However, despite the larger variance in 

rewards obtained from the environment, solutions would stabilize to their correct values (optimality) 

over the long-run.  

In short, all models require more training (that is, several episodes) than humans (less than one 

episode) to reach equivalent accuracy (about 0.47). However, models learn much faster with 

distance-based rewards than with environmental rewards. In fact, when distance-based rewards are 

used, environmental rewards appear at best redundant and provide no additional benefit, and at 

worse can impair performance by partially rewarding strategies that involve guessing. In the 

following section, we use this result to make a prediction of performance for humans who are given 

no explicit feedback.  

3.2.1 Testing predictions about learning with and without explicit feedback 

We designed an experiment to compare the performance of human participants who are given or 

not given explicit feedback on this task. The prediction of our model is that participants given no 

feedback should perform at least as well as participants who are told if their answers are correct or 

not. 

3.2.1.1 Design 

The experimental design consisted in manipulating one independent factor, availability of explicit 

feedback, over two levels: (1) a reinforcement learning group in which participants were told if their 

answers were correct or not, and (2) a control group receiving no feedback. 

3.2.1.2 Participants 

The data sample contained forty participants (N=20 per condition); 23 females and 17 were males. 

Mean participants’ age was 23.2, ranging from 18 to 47 years of age. Participants were recruited 

through the McGill University subject pool (N=22) or were unselected web users (N=18).   

Participants were assigned to one of the conditions (reinforcement or control) in a round-robin 

fashion, starting with group with the fewest completed participants.  
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3.2.1.3 Procedure 

The experimental procedure is similar to the one used previously (Dandurand et al., 2004) except 

that the experiment was performed online. For this purpose, the program previously used was 

adapted as a Java applet that could run online in standard web browsers. The online method was 

found to be valid for this experiment (Dandurand et al., 2008).  

Upon pressing the “Answer” button after the third weighing, the program displayed a message to the 

participants in the reinforcement learning group indicating if the gizmo they identified as heavy or 

light was the correct one. In contrast, participants in the control group were told that their answer 

was recorded and that they would get their accuracy score at the end of the experiment, but they 

were not told if individual trials were correct or not. 

3.2.1.4 Results 

Participants completed a mean of 15.5 trials in the reinforcement learning group, and 16.7 trials in 

the control group. We found that accuracy of the control group (M = 0.48, SE = 0.06) was higher than 

accuracy of the reinforcement learning group (M = 0.46, SE = 0.05), as we expected. However, this 

difference in accuracies was not statistically significant, t (38) < 1. This nevertheless confirms our 

prediction about the role of explicit feedback, namely that humans do not need explicit feedback to 

learn this task, and that performance without explicit feedback is at least as high as performance 

with explicit feedback. Note that average accuracy of the reinforcement learning group was lower 

than previously measured in the lab (M = 0.58), see (Dandurand et al., 2008) for more details about 

differences between the lab and the online methods for the Gizmo task. 

These experimental results support the prediction made by the model: when problem solvers can 

estimate their distance to goal and use this estimation as self-generated rewards, explicit 

environmental rewards are, at best, redundant and do not further improve learning.  

3.3 Simulation 3 - Cognitive bias for symmetry and simplicity  

In this last simulation, we assess how symmetry and simplicity biases (λ = 1 vs. λ = 0) improve the 

utility of actions selected. We focus on data of the control group described earlier. Models and 

humans can be matched in two ways: given equivalent training, or reaching equivalent accuracies. 

We test whether cognitive biases are effective in both cases. 

We manipulate two factors: 
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1. Amount of model learning (4 levels: 1, 2, 12 and 25 episodes). There are two ways to match 

human performance. First, as done in previous models, we can give models approximately 

the same amount of overt training as humans had. We have seen that, in this condition, 

model accuracy tends to be lower than humans. Second, we can train models more than 

humans so that accuracies of humans and models approximately match. One episode 

corresponds approximately to human overt training10, whereas we empirically find that 25 

episodes of training yield model accuracy that approximately matches human-level accuracy 

(see Figure 7); see the discussion section for further details. 

2. Cognitive bias for symmetry and simplicity (2 levels: λ = 0 for unbiased model; λ = 1 for 

biased model). The unbiased model is identical to the one presented in simulation 2.  

To assess the effect of biases on selection actions, we perform mixed ANOVAs on complexity and 

asymmetry measures with model type as an independent factor (2 levels: model with bias and 

unbiased model) and training level as a repeated factor (4 levels: 1, 2, 12 and 25 episodes). We 

ignore the first weighing because initial state (12xU) yields a fixed and predictable selection 

complexity of 2 (Labels U on each side of the scale) and an asymmetry of 0. 

A pre-training period is necessary for models to effectively learn to prefer simple and symmetrical 

solutions from the penalty term λ. During this pre-training period lasting 50 episodes, biased models 

are rewarded for selecting simple and symmetrical actions, but not for solving the task. That is, they 

receive no environmental nor distance-based reward (that is, µ = 0, β = 0, and λ = 1, in equation 4). 

When pre-training is finished, models learn to solve the task with distance-based rewards only but 

retain a preference for simple and symmetrical solutions (µ = 0, β = 1, and λ = 1). 

Figure 8 shows human and model accuracy as a function of training. Recall that humans got the 

equivalent of about one episode of training, hence the single point for human accuracy. We can see 

that model accuracy is below human accuracy given equivalent training, but reaches a comparable 

level by 25 episodes for both the biased and unbiased models.  

We analyze arcsine-transformed accuracies using a mixed ANOVA with training level as a repeated 

factor (4 levels: 1, 2, 12 and 25 episodes) and bias as an independent factor (2 levels: biased and 

unbiased). The ANOVA reveals a main effect of training level, F(1,38) = 20, p < 0.001, stemming from 

                                                           
10

 Humans completed a mean of 18.6 trials which corresponds to less than one episode in reinforcement 

learning terms (an episode is a pass throughout all 24 different problem trials). Because the model 

implementation uses the episode as the basic unit for training, we use a single episode of training to 

approximately match human learning. 
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an increase in accuracy with training. The effect of bias is not significant, F(1,38) < 1. We also find a 

significant interaction between training and bias, F(1,38) = 5.5, p < 0.01. This interaction suggests 

that models that select simple and symmetrical actions are more accurate than unbiased networks, 

but only early in training (1 episode of training). We return to the possible implications of this 

interaction in the discussion.  

 

   

Figure 8 – Human and model accuracy as a function of learning time and biases for simple and symmetrical 

solutions. 

 

Complexity measure results are presented in Figure 9 and Figure 10 for weighings 2 and 3 

respectively. As we can see, unbiased models generate more complex solutions than humans. 

However, complexity of the solutions generated by the biased models remain comparable to human 

throughout training levels for both weighings.  
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Figure 9 - Complexity of selection actions in weighing 2 for humans and models. Models are trained between 

a single episode, which is approximately equivalent to over human training, and 25 episodes, which yields an 

accuracy approximately equal to human level. 

 

We analyze the measure of complexity using a mixed ANOVA with training level as a repeated factor 

(4 levels: 1, 2, 12 and 25 episodes) and bias as an independent factor (2 levels: biased and unbiased). 

For weighing 2, the ANOVA on complexity reveals a main effect of model type, F(1,38) = 62, p < 

0.001, stemming from larger complexity in the unbiased model (M= 3.2) than the biased ones 

(M=2.6). We also found a significant effect of training, F(1,38) = 16, p < 0.001, stemming from an 

increased complexity between one episode of training (M=2.75) and 25 episodes (M=3.1), and an 

interaction, F(1,38) = 7.7, p < 0.001, stemming from a larger increase in the unbiased model than the 

biased one. 
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Figure 10 - Complexity of selection actions in weighing 3 for humans and models. Models are trained 

between a single episode, which is approximately equivalent to over human training, and 25 episodes, which 

yields an accuracy approximately equal to human level. 

 

For weighing 3, the ANOVA on complexity reveals a main effect of model type, F(1,38) = 63, p < 

0.001, stemming from larger complexity in the unbiased model (M= 3.1) than the biased ones 

(M=2.4). The effect of training level was also significant, F(1,38) = 237, p < 0.001, which indicates that 

selections were less complex early in training (1 episode: M=2.7) than late in training (25 episodes: 

M=2.9). Finally, the interaction was not significant, F(1,38)=1.8 , p > 0.05. 

Asymmetry measure results are presented in Figure 11 and Figure 12 for weighings 2 and 3 

respectively. We observe the same pattern as for complexity: unbiased models generate more 

asymmetrical solutions than humans; and again solutions generated by the biased models are 

comparable to humans in terms of asymmetry.  

For weighing 2, the ANOVA of asymmetry reveals a main effect of model type, F(1,38) = 173, p < 

0.001, stemming from larger asymmetry in the unbiased model (M=1.2) than the biased ones 

(M=0.5). The effect of level of training was also significant, F(1,38) = 3.7, p < 0.05, which indicates 

that selections were more asymmetrical early in training (1 episode: M=1.0) than later in training (25 

episodes: M=0.8). Finally, the interaction was not significant, F(1,38)=1.7, p>0.05. 
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Figure 11 - Asymmetry of selection actions in weighing 2 for humans and models. Models are trained 

between a single episode, which is approximately equivalent to over human training, and 25 episodes, which 

yields an accuracy approximately equal to human level. 

 

 

Figure 12 - Asymmetry of selection actions in weighing 3 for humans and models. Models are trained 

between a single episode, which is approximately equivalent to over human training, and 25 episodes, which 

yields an accuracy approximately equal to human level. 

 

For weighing 3, the ANOVA on asymmetry reveals a main effect of model type, F(1,38) = 120, p < 

0.001, stemming from larger asymmetry in the unbiased model (M=1.3) than the biased ones 
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(M=0.7). The effect of weighing was also significant, F(1,38) = 2.9, p < 0.05, which indicates that 

selections were more asymmetrical early in training (1 episode: M=1.1) than later in training (25 

episodes: M=0.9). Finally, the interaction was significant, F(1,38)=3.9 , p < 0.05, which suggests that 

the reduction in asymmetry was larger for unbiased models than biased ones. 

4.  Discussion 

We implemented a distance-reduction heuristic as distance-based rewards. By generating rewards 

based on closeness to goal, models learn to prefer actions that lead to states closer to goal. We saw 

that distance-based rewards were sufficient to learn the Gizmo task. In fact, when distance-based 

rewards were available, environmental rewards appeared redundant and provided no additional 

benefit.  This allowed us to make a prediction that was confirmed in human performance on this 

task: participants who obtain explicit feedback (rewards) on their performance do no better than 

control participants. 

Concepts of symmetry and simplicity proved useful to discriminate between human solutions and 

model solutions. By default, models typically selected more complex and asymmetrical actions than 

humans did. However, the addition of a penalty term for complexity and asymmetry in model 

selections, in conjunction with a pre-training period, yielded solutions of equivalent complexity and 

asymmetry. 

These two additions, a distance-reduction heuristic and cognitive biases, greatly improved the 

coverage of the model, although the accuracy of the model is still below human accuracy given 

equivalent overt training. 

4.1 Why do distance-based rewards work better than environmental 

rewards? 

Why do problem solvers learn better with distance-based rewards than environmental rewards? 

First, distance-based rewards are more frequent. In this problem, solvers can compute or estimate 

distance to the goal on every weighing. In contrast, environmental rewards are available only after 

the third weighing. Second, distance-based rewards are richer. While environmental rewards only 

indicate if a solution was found or not (binary value), distance-based rewards are graded as a 

function of distance. Such gradation allows problem solvers to compare failed solutions: the solution 

that moved the problem solver closer to the goal will generate more rewards and thus be judged as 

more desirable than the one that resulted in a larger distance to goal. 
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4.2 Why cognitive biases may be beneficial? 

One can ask why humans tend to prefer simple and symmetrical actions. Of course, simplicity and 

symmetry are generally cognitively less demanding (they take less time to plan and execute, less 

inference to interpret results, etc.). Because it is probably adaptive for agents to minimize use of 

resources, starting with simple and symmetrical solutions is preferred. 

Simulation results suggest an additional, less obvious explanation. We found that models that tend to 

select simple and symmetrical actions were more accurate than unbiased models, but only when 

training was short. In fact, the bias towards simplicity and symmetry appears to ultimately impede 

the generation of correct solutions to this problem in humans (Dandurand et al., 2007). This suggests 

that symmetrical and simple solutions may be better on average when not much is known about the 

problem. Selecting complex and asymmetrical steps is perhaps necessary to generate better 

solutions, but it is not sufficient. In fact, the set of asymmetrical and complex solutions is logically 

larger than the set of simple and symmetrical solutions, and may contain many poor actions11. With 

little a-priori knowledge of the task, starting with simple and symmetrical solutions not only saves 

resources, but it also yields better (yet suboptimal) solutions on average. If this example is typical of 

a wide variety of tasks, it may make sense for humans as problem solvers to have evolved a general 

preference for symmetry and simplicity, especially in a context where a reasonable (but not 

necessarily optimal) solution must be generated quickly with minimal effort, c.f., satisficing 

(Gigerenzer et al., 1999; Simon, 1957). 

4.3 What is likely missing in the model? 

In this research, we focused on a distance-reduction heuristic as a mechanism for learning using self-

generated rewards. However, human problem solving likely involves more cognitive processes than 

the ones implemented in this model, including mechanisms or strategies for learning without 

rewards. For example, the present model lacks an explicit module to perform look-ahead reasoning. 

By mentally simulating the task, generating weight hypotheses and predicting outcomes, a problem 

solver could greatly save on overt trials. In fact, this task can be solved on paper by reasoning only. 

Paper here would act as an external aid because most humans probably could not completely solve 

the task mentally. However, the point is that humans can probably save on overt weighings by using 

covert, mentally simulated weighings. This may explain why humans require less overt training than 

current models. This could be tested by looking at the time-course of task performance. For instance, 
                                                           
11

 The fact that, as training proceeds, the accuracy of the biased models increases in a more stable and steady 

fashion compared to the unbiased models (see Figure 8) is consistent with the hypothesis that biased models 

explore a smaller portion of the problem space.   
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if we assume that it takes about the same time to obtain information by mental simulations and 

overt use of the computer program, participants should on average improve at the same rate, with 

respect to time, regardless of the number of trials overtly made. If we assume that information can 

be obtained faster using mental simulations than overt use of the program, participants who take 

longer per trial (and thus may engage in more mental simulations) may outperform those who 

complete trials quickly. 

Work on algorithms such as TDLeaf, which combines search and reinforcement learning (Baxter, 

Tridgell, & Weaver, 1998), could serve as inspiration for developing a mentally-simulated, look-ahead 

module. Future research could also explore how other standard heuristics could be implemented in 

the model.  

4.4 Similarities and differences with other models 

In the introduction, we described a number of systems related to the present model. Here, we 

further describe the present work in the context of two particularly relevant research lines. 

First, Polat and Abul (2002) developed a system for learning a Constrained Blocks World problem in a 

multi-agent context. Agents needed to find an action sequence that transforms an initial 

configuration of blocks into a goal configuration. In their system, rewards for non-terminal states 

were calculated by scaling (dividing) environmental rewards by an estimated distance to goal, as 

described in the introduction. While this approach allows closeness to goal to amplify the effect of 

environmental rewards, the latter are still needed, thus not addressing how learning can occur 

without environmental rewards. In contrast, the proposed approach based on distance based 

rewards (DBR) uses an additive scheme in which closeness to goal linearly combines with 

environmental rewards to allow problem solvers to learn from any combination of means-ends 

analysis or environmental rewards. The two systems also differ in the mechanisms they use to learn 

or store state-action-reward information – the DBR-based system uses neural networks to 

approximate rewards, whereas the Polat and Abul system uses lookup tables to store reward values. 

Recall that neural networks generalize to unvisited states and actions based on similarity, whereas 

standard lookup tables do not.  

Second, Bianchi and collaborators (2008) developed a Heuristically Accelerated Reinforcement 

Learning (HARL) system for autonomous robots to learn to navigate an environment. HARL is very 

similar to DBR in using a weighted sum of explicit rewards and contributions of a heuristic function. 

The most important difference between HARL and DBR resides in where and how the combination of 

rewards and heuristic values occurs. In HARL, the heuristic score directly influences the choice of 
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action (that is, the policy). The expected long term value of actions (i.e., Q values) is unaffected by 

the heuristic. As a consequence, the heuristic values influence, but cannot substitute for, explicit 

environmental rewards. In contrast, for DBR, heuristic values affect the choice of action throughout 

the value function (i.e., Q), which leaves the policy unchanged: probabilistically select one of the four 

actions with highest expected value. Because self-generated distance-based rewards are just another 

source of rewards for DBR, it can learn using any combination of self-generated heuristic rewards 

and explicit environmental rewards (even when no explicit reward is given). In contrast, HARL needs 

explicit rewards, and thus would not be able to learn with heuristics only. 

Finally, the proposed connectionist approach to approximating expected rewards and implicitly 

learning rules or strategies contrasts with the production system approach of Fu and Anderson 

(2006). While both models learn from environmental rewards using SARSA and Softmax, only the 

present model includes distance-based rewards and cognitive biases. Another difference lies in the 

complexity of the problem undertaken. Whereas their problem can be expressed with about 4 

production rules, the Gizmo problem comprises 6187 states and 5671402 actions, which would 

require many more rules.  

4.5 Symbolic and connectionist models of problem solving 

There are no explicit rules in the present model - computation of expected rewards is done in a 

connectionist system. This mapping provides implicit rules for solving problems. It is better described 

as rule following rather than rule use (Shultz & Takane, 2007), or here, strategy following rather than 

strategy use. In contrast, symbolic systems manipulate explicit, symbolic rules. While these symbolic 

models can explain how problem solvers select and combine the most appropriate rules for a given 

problem, they leave unanswered an important question: how did these rules or strategies enter the 

system in the first place?  

The Clarion-based approach of Sun and Sessions (2000) proposes an interesting avenue in which two 

levels of representation co-exist, an implicit one and an explicit one. Explicit rules are inferred after 

learning at the implicit level, rather than needing to be given to the model.  

While the implicit and distributed nature of the knowledge in connectionist models may make 

interpretation more challenging, it offers two important advantages over the explicit rules used in 

symbolic systems. Firstly, connectionist representations are more compact. Symbolic models typically 

function as look-up tables with an expected reward value uniquely associated with each rule, and 

independently of all other rules.  For the gizmo problem, an explicit lookup table would require as 

many as 5,671,402 entries (one for each distinct state-action pairs). In contrast, our connectionist 
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model learns a mapping of state-actions to values, and require about 10 hidden units, that is about 

330 connection weights12. Secondly, generalization in connectionist models is more realistic than in 

symbolic counterparts – that is, unvisited states and actions will yield similar expected rewards to 

similar and known states and actions, but in a graded fashion (Shultz, 2001, 2003). In symbolic 

models, expected rewards are typically computed for and assigned to individual rules independently 

of other rules, and therefore we can expect symbolic models to require more learning. 

Despite not explicitly manipulating rules, we acknowledge that the present system is not fully 

connectionist, particularly in the module that lists possible actions from some given state and the 

action buffer. Future work could investigate connectionist implementations of these modules 

(Rougier & O’Reilly, 2002; e.g., Rougier, Noelle, Braver, J. D. Cohen, & O’Reilly, 2005).  

4.6 Relationships between DBR, hill-climbing and means-ends analysis 

DBR implements a distance-reduction heuristic. How does this relate to other important distance-

reduction techniques, namely hill-climbing and means-ends analysis? For this discussion, it is 

important to recall that, because DBR is an extension of an important TD-learning technique (SARSA), 

most characteristics of TD are also present in DBR.  

Hill-climbing (HC) is a term broadly used in machine learning to refer to gradient ascent techniques 

(Russell & Norvig, 2003). It is also used in cognitive psychology to refer to a heuristic consisting of 

selecting and performing actions that move problem solvers closer to a goal state as quickly as 

possible (e.g., Robertson, 2001). As such, both HC and DBR use distance-to-goal information and rate 

as desirable being in a state closer to a solution. 

An important characteristic of hill-climbing is that action selection relies on local information only, 

thus resembling an amnesiac trying to climb a mountain in thick fog (Russell & Norvig, 2003). Detour 

problems (for example, the Cannibals and Missionaries problem) provide a classical challenge to hill 

climbing. To find a solution, problem solvers must temporarily increase distance to goal to escape a 

local distance minimum, that is, a dead-end. Hill-climbing techniques remain stuck in such local 

optima. Furthermore, hill climbing is a greedy technique: it always selects the action that locally 

maximizes approach to goal. It is therefore deterministic without further exploration of the problem 

space: for a given problem, the sequence of actions selected will always be the same. 

                                                           
12

 In standard cascor, the number of connection weights equals 0.5 x hidden x (hidden + 1) + inputs x hidden + 

outputs x (inputs + hidden + 1) 
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In contrast, the fact that DBR is based on TD-learning has two important beneficial implications. First, 

what matters to DBR is maximizing the long-term value or sum of rewards, not only the immediate 

distance reduction as in standard hill climbing. For detour problems, the long-term value of actions 

that avoid dead-ends and lead to some global optima (that is, a goal state) will be higher than the 

value of actions that lead to local optima, despite the immediate rewards (i.e., distance reduction) 

being in the opposite direction. Second, DBR uses Softmax as a probabilistic action selection 

mechanism, which results in more exploration of the problem space. Thanks to these two 

characteristics, DBR should be able to solve detour problems. Exploring how DBR models handle such 

local distance minima would be an interesting avenue for future research.  

Means-ends analysis involves selecting and applying an operator to transform the current problem 

state into a new state which is closer to some goal state in at least one dimension (Newell & Simon, 

1963). Means-ends analysis is search-intensive, and combines forward and backward search (Rich, 

1983). In contrast, TD-learning only uses one-step, forward-only search to list possible actions from 

the current state. Good estimates of the long-term rewards occur in SARSA by bootstrapping (Sutton 

& Barto, 1998), that is, by the gradual diffusion of Q values back by one time step (t+1 to t). It should 

be noted that TD does propagate some Q values signal backwards by one time step, but only to the 

visited states that have been reached by this forward search; it does not search backwards.  

Preliminary work using think-aloud-protocols provides evidence that distance-reduction efforts are 

common in human solutions -- for instance, participants stating explicitly their objective of excluding 

as many gizmos as possible. However, more research would be needed to find direct evidence that 

participants are using backward search for solving the Gizmo problem. Backward search is, by 

necessity, a mental construction because the agent is, also by necessity, traversing the problem 

space in a forward fashion in reality. More research would also be needed to determine what sub-

goals, if any, human participants identify in the Gizmo Task. For instance, entering the third weighing 

with at most 3 possibilities could be stated as a sub-goal. However, preliminary results suggest that 

sub-goal identification is rare. If sub-goals could be identified, future models could implement a 

hierarchical system that looks for appropriate sub-tasks. Studying hierarchical representations in 

reinforcement learning is an active area of research (e.g., Botvinick, Niv, & Barto, 2009). 

5.  Conclusion 

To sum up, along with others, we provide additional support that reinforcement learning can be used 

to model human problem solving. We presented a connectionist model of problem solving based on 

an improved version of SARSA in which closeness to goal is rewarded, and complex and asymmetrical 
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actions are penalized. These extensions allowed the model to better simulate human patterns of 

performance on the task.  

DBR is a novel approach to generating rewards for SARSA. Distance-based rewards, when they can be 

computed, are denser and richer than their binary environmental counterparts. In this case, they are 

available at every weighing, and they provide a graded evaluation as a function of distance, allowing 

finer discriminations between action alternatives. In our proposed modification of SARSA, these 

rewards can be linearly combined with environmental rewards.  

Finally, this research shows how multiple sources of information (here, environmental and distance-

based rewards) can combine with realistic constraints (here, biases) in a unified way. To our 

knowledge, no other cognitive model has proposed such a unified framework based on a single 

learning rule with many psychologically plausible features of human problem solving (learning, 

means-ends analysis, cognitive biases, and an action buffer).  
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7.  Appendix 

7.1 Appendix 1 - Optimal solutions 

The solution space was fully searched to find the exhaustive set of optimal solutions. Optimal 

solutions lead to the reliable identification, without guessing, of all 24 possible cases of target gizmos 

(12 gizmos x 2 weights -- heavy or light). Measuring accuracy of some solution as the average number 

of correct responses over the 24 possible cases, only optimal solutions will yield 100% accuracy. Sub-

optimal solutions also lead to correct answers in some cases, but not reliably. For instance, a solution 

that would, on average, leave two possible gizmos to choose from after the third weighing would 

have an accuracy of 50% (50-50 chance).  

In optimal solutions, each of the 24 possible case (12 gizmos x 2 weights) cause a distinct and unique 

sequence of scale results. The theoretical maximum of gizmos that can be distinguished given 3 

weighings and 3 possible balance outcomes is 33 = 27.  
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7.1.1 Optimal label updates 

The following set of rules allows problem solvers to update labels optimally, at any weighing: 

1. If the scale does not move, then all gizmos on it are of normal (N) weight. 

2. If the scale moves, then all gizmos left in the bank are of normal (N) weight. 

3. If there are gizmos of unknown (U) weight located on the side of the scale that moves up, 

then they are of Light or Normal (LN) weight. 

4. If there are gizmos of unknown (U) weight located on the side of the scale that moves 

down, then they are of Heavy or Normal (HN) weight. 

5. If there are gizmos of Light or Normal (LN) weight located on the side of the scale that 

moves down, then they are of normal (N) weight. 

6. If there are gizmos of Heavy or Normal (HN) located on the side of the scale that moves 

up, then they are of normal weight. 

7. If all gizmos are marked as of normal weight (N), except for one which is marked as 

Heavy or Normal (HN) or Light or Normal (LN) weight, then this gizmo is the answer, and 

should be relabeled as Heavy (H) or Light (L), respectively. 

7.1.2 Optimal gizmo selection 

In this section we present optimal gizmo selections, organized by weighing. Note that, due to 

symmetry, solutions are equivalent when the arrangements on the two sides of the scale would be 

exchanged or swapped.  

7.1.2.1 First weighing 

On the first weighing, the only optimal selection action is to install four versus four gizmos on the 

balance scale, as shown in Table 5. After optimal label updates, this optimal solution leads to two 

possible states (as the two unbalanced cases are in fact symmetrical): (1) 4xU, 8xN for the balanced 

case; and (2) 4xHN, 4xLN, 4xN for the unbalanced case. Using the distance measure described below, 

we see that distance to goal in both cases is 8. 

Balance scale side 1 Balance scale side 2 Bank 

4xU 4xU 4xU 

Table 5 – Optimal solutions for weighing 1, starting from the 12xU. 

7.1.2.2 Second weighing 

Following the balanced case (state: 4xU, 8xN), two optimal solutions exist, as shown in Table 6. After 

optimal label updates, both solutions result in two possible states depending on the scale result: (1) 

3x(HN and/or LN), 9xN; and (2) 1xU, 11xN. 
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Balance scale side 1 Balance scale side 2 Bank 

3xU 3xN 1xU, 5xN 

2xU 1xU, 1xN 1xU, 7xN 

Table 6 – Optimal solutions for weighing 2, starting from the 4xU, 8xN state. Due to symmetry, sides 1-2 

correspond equivalently to right-left and left-right. 

Solutions found for the unbalanced case (state: 4xHN, 4xLN, 4xN) are presented in Table 7. One can 

verify that, after optimal label updates, all these solutions lead to states in which 2 or 3 gizmos are 

left with HN and/or LN labels (i.e., respectively, 10xN or 9xN), for all three possible scale outcomes 

(balanced, left side heavier or right side heavier). 

Variant 1 Variant 2 

Scale side 1 Scale side 2 Bank Scale side 1 Scale side 2 Bank 

HN LN N HN LN N HN LN N HN LN N HN LN N HN LN N 

2 1  2 1   2 4 1 2  1 2   2 4 

2 1  1 1 1 1 2 3 1 2  1 1 1 2 1 3 

3 2  1  4  2  2 3   1 4 2   

2 2   1 3 2 1 1 2 2  1  3 1 2 1 

2 1  2  1  3 3 1 2   2 1 3  3 

1 3   1 3 3  1 3 1  1  3  3 1 

2 2  1 1 2 1 1 2          

Table 7 - Optimal solutions for weighing 2, starting from the 4xHN, 4xLN, 4xN state. Due to symmetry, sides 

1-2 correspond equivalently to right-left and left-right. When applicable, solution variants in which HN and 

LN gizmos are interchanged are presented side by side. 

7.1.2.3 Third weighing 

Optimal solutions at the second weighing yield states in which 2 or 3 gizmos are left with HN and/or 

LN labels (and, respectively, 10xN or 9xN). The three scale outcomes (balanced, left side heavier or 

right side heavier) are used to discriminate up to 3 possibilities left (HN and/or LN).  Possible 

solutions are shown in Table 8. 
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Variant 1 Variant 2 

Scale side 1 Scale side 2 Bank Scale side 1 Scale side 2 Bank 

HN LN N HN LN N HN LN N HN LN N HN LN N HN LN N 

1   1   1  9  1   1   1 9 

1   1    1 9  1   1  1  9 

1 1    2  1 9 1 1    2 1  9 

1 1    2   10          

1     1 1  10  1    1 1  10 

1     1  1 10  1    1  1 10 

                  

Table 8 - Optimal solutions for weighing 3, starting from the states (1) 3x(HN and/or LN), 9xN; or (2) 2x(HN 

and/or LN), 10xN. Due to symmetry, sides 1-2 correspond equivalently to right-left and left-right.  

7.2 Appendix 2 - Cascade-Correlation parameters settings 

For this problem, target expected rewards can take on many different values, especially when all 

terms of equation 4 contribute. This requires more precise tracking of target values than typical 

binary classification tasks that simply require discriminating two values. While default cascor 

parameters were appropriate for binary classification, we empirically find that allowing cascor to 

remain for longer periods in input and output phases results in improved performance for this task. 

To allow cascor to learn for longer periods without switching phases, we selected: (1) a large value 

for the patience parameter (50 epochs in input and output phases rather than the default of 8); and 

(2) a low change threshold parameter (0.01 in input phase, and 0.002 in output phase rather than 

default of 0.03 and 0.01, respectively)13. These parameters are used to detect error reduction 

stagnation. Cascor switches phase if error reduced by less than “change threshold” over “patience” 

epochs. Cascor also switches phase after having reached maximum epochs in the current phase, set 

here to 200. We set the score threshold at .025 of the reward range to track target expected values 

with sufficient precision, as done previously (Dandurand & Shultz, 2009). No weight change is 

allowed to be greater in magnitude than the maximum growth factor times the previous step for that 

weight (Fahlman, 1988). Here, maximum growth factor was set to 2.0. The decay parameter, set to 

0.0002 in output phase and to 0 in input phase, is used to keep weights from growing too big. Finally, 

                                                           
13

 Parameter values were the defaults in the previous model (Dandurand & Shultz, 2009). 



Running Head: CONNECTIONIST MODEL OF PROBLEM SOLVING                                                                43 
 

the learning rate, which controls the amount of gradient descent used in updating weights, was set 

to 0.175 in output phase and to 1.0 in input phase. 
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